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1 Strong Markov property

The memoryless/Markov property for a stationary Markov chain can be expressed as follows:
“for each n, the process Xn, Xn+1, . . . is a Marko chain with the same transition probabilities
as X0, X1, . . .”

Question: is the same result true if we replace n by a stopping time τ?

Let (Xn)n≥0 be a Markov chain with transition matrix P and let Fn = σ(X0, . . . , Xn) . The
Markov property can be rephrased in terms of Fn as follows:

P(Xn+1 = j | Xn = i,Λ) = Pij for Λ ∈ Fn.

Equivalently,

P(Λ, Xn = i, Xn+1 = j) = P(Λ, Xn = i)Pij for Λ ∈ Fn. (1)

Proposition 1.1 (Strong Markov property). Let τ be a finite stopping time (i.e., τ < ∞
a.s.). Given that Xτ = i, the sequence (Xτ+n)n≥0 is a Markov chain with transition matrix
P .

Proof. Let S be a finite stopping time and let Λ ∈ FS. Remember that

FS = {Λ ∈ F : Λ ∩ {S = n} ∈ Fn for all n = 0, 1, 2 . . .} .

Then, for states i and j,

P(Λ, XS = i, XS+1 = j) =
∑

k≥0

P(Λ ∩ {S = k}, Xk = i, Xk+1 = j).

Since Λ ∈ FS, it follows that Λ ∩ {S = k} ∈ FS for each k. By (1),

P(Λ, XS = i, XS+1 = j) = Pij

∑

k≥0

P(Λ ∩ {S = k}, Xk = i) = PijP(Λ, XS = i).

Divide both sides by P(Λ, XS = i) to get

P(XS+1 = j | Λ, XS = i) =
P(Λ, XS = i, XS+1 = j)

P(Λ, XS = i).
= Pij. (2)
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Now, fix n. Take S = τ + n. Since S is the sum of a stopping time and a constant, S is
also a stopping time. Let Λ = {Xτ = i0, . . . , Xτ+n = in}. Therefore, by (2),

P(Xτ+n+1 = in+1 | Xτ+n = in, . . . , Xτ = i0) = Pinin+1
.

That is, (Xτ+n)n≥0 is a Markov chain with transition matrix P .

An immediate corollary of the above is the following:

Corollary 1.2. Let X0, X1, . . . be i.i.d. discrete random variables (so that (Xn)n≥0 is a sta-
tionary Markov chain). Let τ be a finite stopping time. Then, Xτ+1 has the same distribution
as X0.

Before we prove this, let’s try to understand the intuition.

Example 1.3. A gambler plays roulette and chooses a time to place a bet. Let Xn be the
outcome of the n-th spin and τ be the stopping time at which the bet is placed. The above
says that Xτ+1 has the same distribution as X0. In other words, assuming that the gambler
eventually places a bet (i.e., τ < ∞), they are no better off than they would have been had
they placed the bet at time zero (i.e., τ = 0).

Proof. X0, X1, . . . is a Markov chain with transition probabilities Pij = P(Xn+1 = xj | Xn =
xi) ≡ pj. In other words, Pij does not depend on i. By the strong Markov property,
Xτ , Xτ+1, . . . is once again a Markov chain with the same transition probabilities. That is,
if Λ ∈ Fτ ,

P(Xτ+1 = xj | Λ, Xτ = xi) = Pij = pj = P(X0 = xj).

Exercise 1.4. Xτ does not necessarily have the same distribution as X0. Why?

2 Recurrence and transience

If we start a Markov chain at state i, will it ever return to i? How many times will it return
to i? These are the questions we look to answer next.

Definition 2.1. For a discrete random variable Y , we define its expectation conditional on
an event Λ with P(Λ) > 0 by

E [Y | Λ] =
E [Y · IΛ]

P(Λ)
.

Actually, the conditional expectation for a general random variable is much harder to
define. We might come back to it later. To simplify notation, let

P
i(Λ) = P(Λ | X0 = i)

be the probability of Λ conditional on the initial state of the Markov chain being i. Similarly,
let

E
i(Y ) = E [Y | X0 = i] .

Definition 2.2. The first hitting time of i is Ti = inf{n ≥ 1: Xn = i}.
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If X0 6= i, Ti is the first time the chain reaches i. If X0 = i, Ti is the first time the
chain returns to i. In the above, inf ∅ = ∞, so that Ti = ∞ corresponds to the chain never
hitting/returning to i.

Exercise 2.3. Ti is a stopping time.

Exercise 2.4. Let i 6= j. Show that i → j if and only if Pi{Tj < ∞} > 0.

Definition 2.5. A state i is recurrent if Pi{Ti < ∞} = 1. It is transient otherwise.

We can extend the definition of Ti as follows: let T 1
i = Ti and

T n+1
i = inf {k > T n

i : Xk = i} .

That is, T n
i is the n-th time the Markov chain visits i.

Exercise 2.6. T n
i is a stopping time for each n ≥ 1.

Definition 2.7. The total number of returns to i is

Ni = |{n : T n
i < ∞}| = |{n ≥ 1: Xn = i}| .

Proposition 2.8. Let i be a given state and define p = P i{Ti < ∞}. Then,

P
i {Ni ≥ n} = pn.

In particular, if X0 = i then

• Ni = ∞ a.s. if i is recurrent and

• E
i[Ni] =

p

1−p
if i is transient.

Proof. Let p(n) = P
i{Ni ≥ n}. Note that

Ni ≥ n ⇐⇒ T n
i < ∞.

Therefore, p(1) = p by definition. Now, suppose p(k) = pk for k = 1, 2, . . . , n. If T n
i < ∞,

then XTn

i
= i. Therefore, by the strong Markov property, (XTn

i
+n)n≥0 is a Markov chain

with the same transition matrix as (Xn)n≥0. Therefore,

P
i(Ni ≥ n+ 1) = P

i(Ni ≥ n)p.

Equivalently, p(n+1) = p(n)p = pnp = pn+1. This establishes that

p(n) = pn

for all n ≥ 1. Now, note that

E
i [Ni] =

∑

k≥1

P
i {Ni ≥ n} =

∑

k≥1

pk =

(

∑

k≥0

pk

)

− 1 =
1

1− p
− 1 =

p

1− p
.
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Remark 2.9.

1. If the chain starts at a recurrent state, it returns to that state infinitely often.

2. The claim
E
i [Ni] =

p

1− p

is actually true even when i is recurrent under the interpretation 1/(1 − p) = ∞.
Therefore,

i is transient ⇐⇒ E
i [Ni] < ∞

i is recurrent ⇐⇒ E
i [Ni] = ∞.

We can express the above just using the transition matrix P . Note that the claims below
also hold for non-finite state spaces, if we interpret P to be a denumerable transition matrix.
For our purposes, an understanding of the finite case is sufficient.

Proposition 2.10. A state i is recurrent if and only if
∑

n≥0(P
n)ii = ∞.

Proof. This is just a consequence of (P n)ii = P(Xn = i | X0 = i). Since Ni =
∑

n≥1 I{Xn=i},
it follows that

E
i [Ni] = E

i

[

∑

n≥1

I{Xn=i}

]

=
∑

n≥1

E
i
[

I{Xn=i}

]

=
∑

n≥1

(P n)ii.

Corollary 2.11. A state i is transient if and only if
∑

n≥0(P
n)ii < ∞.

Corollary 2.12. If i → j and i is recurrent, then i ↔ j, P
j{Ti < ∞} = 1, and j is

recurrent.

Proof. Since i → j, P
i{Tj < ∞} > 0. Therefore, if P

j{Ti < ∞} < 1, then we obtain a
contradiction to E

i[Ni] = ∞.
Therefore, we can find r and s such that (P r)ij > 0 and (P s)ji > 0 (since i ↔ j). Then,

for any n,

(P s+n+r)jj =
∑

k,ℓ

(P s)jk(P
n)kℓ(P

r)ℓj ≥ (P s)ji(P
n)ii(P

r)ij .

Therefore,
∑

n

(P n)jj ≥
∑

n

(P s+n+r)jj = (P s)ji(P
r)ij
∑

n

(P n)ii

Now, since (P s)ji(P
r)ij > 0, then j is recurrent since

∑

n(P
n)ii = ∞.
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