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1 Strong Markov property

The memoryless/Markov property for a stationary Markov chain can be expressed as follows:
“for each n, the process X,,, X,,11, ... is a Marko chain with the same transition probabilities
as Xo,Xl, o

Question: is the same result true if we replace n by a stopping time 77

Let (X,,)n>0 be a Markov chain with transition matrix P and let F,, = 0(Xo,...,X,) . The
Markov property can be rephrased in terms of F,, as follows:

P(Xp1 =7 | Xn=1,A)=D; for A € F,.
Equivalently,
PA, X, =14, X1 =7) =P(A, X, =19)P; for A € F,. (1)

Proposition 1.1 (Strong Markov property). Let 7 be a finite stopping time (i.e., T < 00
a.s.). Given that X, =i, the sequence (X, in)n>0 is a Markov chain with transition matrix

P.

Proof. Let S be a finite stopping time and let A € Fs. Remember that
Fs={AeF: An{S=n}eF,foralln=0,1,2...}.

Then, for states ¢ and 7,

P(A, Xg =i, Xgp1 =) = Y PAN{S =k}, X =i, Xpt1 = j).

k>0
Since A € Fyg, it follows that AN {S =k} € Fg for each k. By (1),
P(A, Xg =i, Xgp1 = J) = Py »_PAN{S =k}, Xy, = i) = PyP(A, X5 = i).
k>0
Divide both sides by P(A, Xg =) to get

]P)(Au XS = i7 X5+1 = .])

P(XS+IIJ|A7XS:Z): IP)(A XSIZ)

= Fj. (2)



Now, fix n. Take S = 7 + n. Since S is the sum of a stopping time and a constant, .S is
also a stopping time. Let A = {X, =g, ..., X;4, = i, }. Therefore, by (2),
IP)(prnﬂ = lnt1 | Xofn =ln,y .., X = Z’0) =P

nin+1 °
That is, (X4n)n>0 is @ Markov chain with transition matrix P. O
An immediate corollary of the above is the following:

Corollary 1.2. Let X, X1, ... be i.i.d. discrete random variables (so that (X,,),>0 is a sta-
tionary Markov chain). Let T be a finite stopping time. Then, X1 has the same distribution
as Xp.

Before we prove this, let’s try to understand the intuition.

Example 1.3. A gambler plays roulette and chooses a time to place a bet. Let X, be the
outcome of the n-th spin and 7 be the stopping time at which the bet is placed. The above
says that X, has the same distribution as Xj. In other words, assuming that the gambler
eventually places a bet (i.e., 7 < 00), they are no better off than they would have been had
they placed the bet at time zero (i.e., 7 = 0).

Proof. Xy, X1, ...1s a Markov chain with transition probabilities P;; = P(X, 41 = z; | X,, =
x;) = p;. In other words, P;; does not depend on i. By the strong Markov property,
X, X,41,...1s once again a Markov chain with the same transition probabilities. That is,
if A e F;,

P(XT+1 =T ‘ A,XT = IL’Z) = F)ij =p;j= ]P(XO = Ij). O

Exercise 1.4. X, does not necessarily have the same distribution as X,. Why?

2 Recurrence and transience

If we start a Markov chain at state ¢, will it ever return to ¢? How many times will it return
to i? These are the questions we look to answer next.

Definition 2.1. For a discrete random variable Y, we define its expectation conditional on

an event A with P(A) > 0 by
CE[Y -1,
E[Y | Al = P)

Actually, the conditional expectation for a general random variable is much harder to
define. We might come back to it later. To simplify notation, let

Pi(A) = P(A | Xo = i)

be the probability of A conditional on the initial state of the Markov chain being . Similarly,
let
E(Y)=E[Y | Xo=1].

Definition 2.2. The first hitting time of i is T; = inf{n > 1: X,, = i}.
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If Xy # i, T; is the first time the chain reaches i. If Xy = ¢, T; is the first time the
chain returns to 7. In the above, inf ) = oo, so that T; = co corresponds to the chain never
hitting /returning to 1.

Exercise 2.3. T; is a stopping time.
Exercise 2.4. Let ¢ # j. Show that i — j if and only if P/{T; < co} > 0.
Definition 2.5. A state ¢ is recurrent if P{T; < oo} = 1. Tt is transient otherwise.

We can extend the definition of T} as follows: let 7! = T} and

T =inf {k > T": X =i}.
That is, T is the n-th time the Markov chain visits .
Exercise 2.6. T is a stopping time for each n > 1.
Definition 2.7. The total number of returns to ¢ is
Ni=|{n: T/ < oo} =|{n>1: X,, =i}|.
Proposition 2.8. Let i be a given state and define p = P{T; < co}. Then,
P {N; > n} = p".

In particular, if Xq =1 then

o N, =00 a.s. if i is recurrent and

o E'[N;] = 12 if i is transient.
Proof. Let p™ = P{N; > n}. Note that

N;>n < T < .

Therefore, p) = p by definition. Now, suppose p*) = p* for k = 1,2,...,n. If T" < oo,
then X7» = i. Therefore, by the strong Markov property, (X7nin)n>0 is a Markov chain
with the same transition matrix as (X, ),>o. Therefore,

P'(N; > n+1) = P(N; > n)p.

Equivalently, p+t1) = p(®p = p"p = p"*+'. This establishes that

(n) n

p=p

for all n > 1. Now, note that

Ei[Ni]:ZPi{Nizn}:Zpk:(Zﬁ)—bﬁ—h%. O

k>1 k>1 k>0



Remark 2.9.

1. If the chain starts at a recurrent state, it returns to that state infinitely often.

2. The claim »
E'[N;] = ——
)=
is actually true even when i is recurrent under the interpretation 1/(1 — p) = oc.
Therefore,

i is transient <= E'[N;] < oo
i is recurrent <= E'[N;] = cc.

We can express the above just using the transition matrix P. Note that the claims below
also hold for non-finite state spaces, if we interpret P to be a denumerable transition matriz.
For our purposes, an understanding of the finite case is sufficient.

Proposition 2.10. A state i is recurrent if and only if Y, - o(P")i = 0.
Proof. This is just a consequence of (P");; = P(X,, =i | Xo = i). Since N; = > _ -, I1x,=i},
it follows that

E [N)] = E

ZI{Xn:i}] = ZEZ Uix,=i] = Z(P")” O

n>1 n>1 n>1
Corollary 2.11. A state i is transient if and only if 3 o(P")i < oo.

Corollary 2.12. If i — j and i is recurrent, then i < j, PI{T; < oo} = 1, and j is
recurrent.

Proof. Since i — j, P{T; < oo} > 0. Therefore, if P/{T; < co} < 1, then we obtain a
contradiction to E'[N;] = oco.

Therefore, we can find r and s such that (P");; > 0 and (P*);; > 0 (since ¢ <+ j). Then,
for any n,

(P55 = (PP ke(P)ey = (P*)i(P™)a( P

e,
Therefore,
D (P =Y (P = (PP Y (P
Now, since (P*);;(P");; > 0, then j is recurrent since »_ (P"); = oo. O



