All of Statistics - Chapter 8 Solutions

Jan 23, 2020

1.

TODO (Computer Experiment)
2.

TODO (Computer Experiment)

3.

TODO (Computer Experiment)

4.

This is a stars and bars problem (or, equivalently, an "indistinguishable balls in distinct buckets" problem). For example, the configuration $\star|\star \star \star| \mid \star$ corresponds to sampling X_{1} once, sampling X_{2} three times, sampling X_{3} zero times, and sampling X_{4} once. In general, there are n stars and $n-1$ bars, and hence the total number of configurations is $(2 n-1)!/(n!(n-1)!)$.

5.

First, note that

$$
\mathbb{E}\left[\bar{X}_{n}^{*} \mid X_{1}, \ldots, X_{n}\right]=\mathbb{E}\left[X_{1}^{*} \mid X_{1}, \ldots, X_{n}\right]=\bar{X}_{n}
$$

Therefore, by the tower property, $\mathbb{E}\left[\bar{X}_{n}^{*}\right]=\mathbb{E}\left[X_{1}\right]$. Next, note that

$$
\mathbb{V}\left(\bar{X}_{n}^{*} \mid X_{1}, \ldots, X_{n}\right)=\frac{1}{n} \mathbb{V}\left(X_{1}^{*} \mid X_{1}, \ldots, X_{n}\right)=\frac{1}{n^{2}} \sum_{i}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

The above can also be expressed as $S_{n}(n-1) / n^{2}$ where S_{n} is the unbiased sample variance of $\left(X_{1}, \ldots, X_{n}\right)$. Next, note that

$$
\mathbb{E}\left[\left(\bar{X}_{n}\right)^{2}\right]=\frac{1}{n^{2}} \mathbb{E}\left[\sum_{i} X_{i}^{2}+\sum_{i \neq j} X_{i} X_{j}\right]=\frac{1}{n}\left(\sigma^{2}+\mu^{2}\right)+\frac{n-1}{n} \mu^{2}=\frac{\sigma^{2}}{n}+\mu^{2}
$$

where $\mu=\mathbb{E}\left[X_{1}\right]$ and $\sigma^{2}=\mathbb{V}\left(X_{1}\right)$. Now, recall that for any random variable Y,

$$
\mathbb{V}(Y \mid \mathcal{H})=\mathbb{E}\left[Y^{2} \mid \mathcal{H}\right]-\mathbb{E}[Y \mid \mathcal{H}]^{2}
$$

Therefore, by the tower property,

$$
\mathbb{E}\left[Y^{2}\right]=\mathbb{E}\left[\mathbb{V}(Y \mid \mathcal{H})+\mathbb{E}[Y \mid \mathcal{H}]^{2}\right]
$$

Applying this to our setting,

$$
\mathbb{E}\left[\left(\bar{X}_{n}^{*}\right)^{2}\right]=\mathbb{E}\left[\frac{n-1}{n^{2}} S_{n}+\left(\bar{X}_{n}\right)^{2}\right]=\frac{2 n-1}{n^{2}} \sigma^{2}+\mu^{2}
$$

As such, we can conclude that

$$
\mathbb{V}\left(\bar{X}_{n}^{*}\right)=\frac{2 n-1}{n^{2}} \sigma^{2}=\frac{2 n-1}{n} \mathbb{V}\left(\bar{X}_{n}\right) \sim 2 \mathbb{V}\left(\bar{X}_{n}\right)
$$

where the asymptotic is in the limit of large n.
6.

TODO (Computer Experiment)
7.
a)

The distribution of $\hat{\theta}$ is given in the solution of Question 2 of Chapter 6.
TODO (Computer Experiment)
b)

Let $\hat{\theta}^{*}$ be a bootstrap resample. Then,

$$
\mathbb{P}\left(\hat{\theta}^{*}=\hat{\theta} \mid \hat{\theta}\right)=1-\mathbb{P}\left(\hat{\theta}^{*} \neq \hat{\theta} \mid \hat{\theta}\right)=1-(1-1 / n)^{n} \rightarrow 1-\exp (-1) \approx 0.632
$$

8.

TODO

