All of Statistics - Chapter 7 Solutions

Jan 20, 2020

1.

Note that

$$
\mathbb{E}\left[\hat{F}_{n}(x)\right]=\mathbb{E}\left[I\left(X_{1} \leq x\right)\right]=\mathbb{P}\left(X_{1} \leq x\right)=F(x)
$$

Moreover,

$$
\mathbb{V}\left(\hat{F}_{n}(x)\right)=\mathbb{V}\left(I\left(X_{1} \leq x\right)\right) / n=F(x)(1-F(x)) / n
$$

By the bias-variance decomposition, the MSE converges to zero. Equivalently, we can say that $\hat{F}_{n}(x)$ converges to $F(x)$ in the L2 norm. Since Lp convergence implies convergence in probability, we are done.

Remark. For each $x, \hat{F}_{n}(x)$ is a random variable. The above proves only that each random variable $\hat{F}_{n}(x)$ converges in probability to the true value of the CDF $F(x)$. The Glivenko-Cantelli Theorem yields a much stronger result; it states that $\left\|\hat{F}_{n}-F\right\|_{\infty}$ converges almost surely (and hence in probability) to zero.

2.

Assumption. The Bernoulli random variables in the statement of the question are pairwise independent.
The plug-in estimator is $\hat{p}=\bar{X}_{n}$. The standard error is $\operatorname{se}(\hat{p})^{2}=\mathbb{V}\left(X_{1}\right) / n=p(1-p) / n$. We can estimate the standard error by $\hat{\operatorname{se}}(\hat{p})^{2}=\hat{p}(1-\hat{p}) / n$. By the CLT,

$$
\hat{p} \approx N\left(p, \operatorname{se}(\hat{p})^{2}\right) \approx N\left(\hat{p}, \hat{\operatorname{se}}(\hat{p})^{2}\right)
$$

and hence an approximate 90% confidence interval is $\hat{p} \pm 1.64 \cdot \hat{\operatorname{se}}(\hat{p})$. The second part of this question is handled similarly.

3.

TODO (Computer Experiment)

4.

By the CLT

$$
\sqrt{n}\left(\frac{\sum_{i} I\left(X_{i} \leq x\right)}{n}-\mathbb{E}\left[I\left(X_{1} \leq x\right)\right]\right) \rightsquigarrow N\left(0, \mathbb{V}\left(I\left(X_{1} \leq x\right)\right)\right)
$$

Equivalently,

$$
\sqrt{n}\left(\hat{F}_{n}(x)-F(x)\right) \rightsquigarrow N(0, F(x)(1-F(x))) .
$$

Or, more conveniently,

$$
\hat{F}_{n}(x) \approx N\left(F(x), \frac{F(x)(1-F(x))}{n}\right)
$$

Remark. The closer (respectively, further) $F(x)$ is to 0.5 , the more (respectively, less) variance there is in the empirical distribution evaluated at x.

5.

Without loss of generality, assume $x<y$. Then,

$$
\begin{aligned}
& \operatorname{Cov}\left(\hat{F}_{n}(x), \hat{F}_{n}(y)\right)=\frac{1}{n^{2}} \operatorname{Cov}\left(\sum_{i} I\left(X_{i} \leq x\right), \sum_{i} I\left(X_{i} \leq y\right)\right) \\
&=\frac{1}{n^{2}} \sum_{i} \operatorname{Cov}\left(I\left(X_{i} \leq x\right), I\left(X_{i} \leq y\right)\right)=\frac{1}{n} \operatorname{Cov}\left(I\left(X_{1} \leq x\right), I\left(X_{1} \leq y\right)\right) \\
&=\frac{1}{n}(F(x)-F(x) F(y))=\frac{1}{n} F(x)(1-F(y))
\end{aligned}
$$

6.

By the results of the previous question,

$$
\begin{aligned}
n \cdot \operatorname{se}(\hat{\theta})^{2} & =n \mathbb{V}\left(\hat{F}_{n}(b)-\hat{F}_{n}(a)\right) \\
& =n \mathbb{V}\left(\hat{F}_{n}(b)\right)+n \mathbb{V}\left(\hat{F}_{n}(a)\right)-2 n \operatorname{Cov}\left(\hat{F}_{n}(b), \hat{F}_{n}(a)\right) \\
& =F(b)(1-F(b))+F(a)(1-F(a))-2 F(a)(1-F(b)) \\
& =(F(b)-F(a))[1-(F(b)-F(a))]
\end{aligned}
$$

We can use the estimator

$$
\hat{\operatorname{se}}(\hat{\theta})^{2}=\frac{1}{n}\left(\hat{F}_{n}(b)-\hat{F}_{n}(a)\right)\left[1-\left(\hat{F}_{n}(b)-\hat{F}_{n}(a)\right)\right]
$$

An approximate $1-\alpha$ confidence interval is $\hat{\theta} \pm z_{\alpha / 2} \cdot \hat{\operatorname{se}}(\hat{\theta})$.
Remark. The closer $F(b)-F(a)$ is to zero or one, the smaller the standard error.

7.

TODO (Computer Experiment)

8.

9.

This is an application of our findings in Question 2. In particular, we use the estimate $(90-85) / 100=0.05$
. A $1-\alpha$ confidence interval for this estimate is $0.05 \pm z_{\alpha / 2} \cdot \hat{\text { se }}$ where

$$
\hat{\mathrm{se}}=\sqrt{0.9(1-0.9) / 100+0.85(1-0.85) / 100} \approx 0.047
$$

The z-scores corresponding to 80% and 95% intervals are approximately 1.28 and 1.96.
10.

TODO (Computer Experiment)

