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1.

Let  be the number of dollars at the -th trial. Then,

By the rule of iterated expectations, . By induction, .

2.

If , then  and hence .

The converse is more complicated. We claim that whenever  is a nonnegative random variable, 
implies that . In this case, it is sufficient to take  to conclude that 

.

To substantiate the claim, suppose . Take . Then,

It follows that  for all . By continuity of probability,

3.

Since , it follows that . Therefore,

4.

Note that  where  are IID. It
follows that  and .

5.

Let  be the number of tosses until a heads is observed. Let  denote the result of the first toss. Then,

Xn n

E[Xn+1 ∣ Xn] = (2Xn + Xn) = Xn.
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EXn+1 = (5/4)EXn EXn = (5/4)nc

P(X = c) = 1 E[X2] = (EX)2 = c2 V(X) = 0

Y EY = 0
P(Y = 0) = 1 Y = (X − EX)2

P(X = EX) = 1

EY = 0 An = {Y ≥ 1/n}

0 = EY = E[Y IAn
+ Y IAc

n
] ≥ E[Y IAn

] ≥ P(An).
1

n

P(An) = 0 n

P(Y > 0) = P(∪nAn) = lim
n

P(An) = 0.

FYn(y) = P(X1 ≤ y)n = yn fYn(y) = nyn−1

EYn = n∫
1

0
yndy = .

n

n + 1

Xn = ∑n
i=1(1 − 2Bi) = n − 2∑iBi B1, … ,Bn ∼ Bernoulli(p)

EXn = n − 2nEB1 = n − 2np V(Xn) = 4nV(B1) = 4np(1 − p)

τ C



Solving for  yields .

6.

7.

Integration by parts yields

Define . Note that  converges pointwise to  as .
Moreover,  is monotone increasing. The desired result follows by Lebesgue’s monotone convergence
theorem.

8.

The first two claims follow from

and

As for the final claim, note that

and hence

Eτ = (E [τ ∣ C = H] + E [τ ∣ C = T ]) = (1 + (1 + Eτ))
1

2

1

2

Eτ 2

E[Y ] = ∑
y

yP(Y = y) = ∑
y

yP(r(X) = y) = ∑
y

yP(X ∈ r−1(y))

= ∑
y

y ∑
x∈r−1(y)

P(X = x) = ∑
y

∑
x∈r−1(y)

r(x)P(X = x) = ∑
x

r(x)P(X = x)

EX = ∫
∞

0
xfX(x)dx = lim

y→∞
yFX(y) − ∫

y

0
FX(x)dx

= lim
y→∞

∫
y

0
FX(y) − FX(x)dx = lim

y→∞
∫

∞

0
(FX(y) − FX(x)) I(0,y)(x)dx.

Gy(x) = (FX(y) − FX(x))I(0,y)(x) Gy 1 − FX y → ∞
y ↦ Gy

E
¯̄̄ ¯̄
X = ∑

i

EXi = EX1 ≡ μ
1

n

V(
¯̄̄ ¯̄
X) = ∑

i

V(X1) = V(X1) ≡ .
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Next, note that  and . Moreover,

and hence . Substituting these findings into the equation above yields ,
as desired.

9.

TODO (Computer Experiment)

10.

The MGF of a normal random variable is . Therefore,  and

11.

a)

This was already solved in Question 4.

b)

TODO (Computer Experiment)

12.

TODO

13.

a)

Let  denote the result of the coin toss. Then,

b)

E [S2
n] = E [X2

1 ] − 2E [X1
¯̄̄ ¯̄
X] + E [

¯̄̄ ¯̄
X

2
] .

n − 1

n

E[X2
1 ] = σ2 + μ2 E[

¯̄̄ ¯̄
X

2
] = σ2/n + μ2

X1
¯̄̄ ¯̄
X =

⎛

⎝
X2

1 + X1 ∑
j≠1

Xj

⎞

⎠

1

n

E[X1
¯̄̄ ¯̄
X ] = σ2/n + μ2 E[S2

n] = σ2

exp(t2/2) E exp(X) = √e

V(exp(X)) = E[exp(2X)] − (E exp(X))2 = e2 − e.

C

EX = E [Unif(0, 1)I{C=H} + Unif(3, 4)I{C=T}] = (E Unif(0, 1) + E Unif(3, 4)) = 2.
1
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Similarly to Part (a),

Therefore, .

14.

The result follows from

15.

First, note that . Moreover,

and

Therefore, .

16.

In the (absolutely) continuous case,

Taking  yields . The discrete case is similar. A more general notion of
conditional expectation requires Radon-Nikodym derivatives.

17.

E [X2] = (E [Unif(0, 1)2] + E [Unif(3, 4)2]) = .
1

2

19

3

V(X) = 19/3 − 4 = 7/3

Cov(∑
i

aiXi,∑
j

bjYj)

= E[(∑
i

aiXi)(∑
j

bjYj)]− E[∑
i

aiXi]E[∑
j

bjYj]

= ∑
i,j

aibjE [XiYj] − ∑
i,j

aibjEXiEYj = ∑
i,j

aibj (E [XiYj] − EXiEYj) .

V(2X − 3Y + 8) = V(2X − 3Y )

E [(2X − 3Y )2] = ∫
2

0

∫
1

0

(2x − 3y)2 (x + y) dxdy =
1

3

86

9

E [2X − 3Y ] = ∫
2

0
∫

1

0
(2x − 3y) (x + y) dxdy = − .

1

3
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9

V(2X − 3Y ) = 245/81

E [r(X)s(Y ) ∣ X = x] = ∫ r(x)s(y)fY ∣X(y ∣ x)dy = r(x)∫ s(y)fY ∣X(y ∣ x)dy

= r(x)E [s(Y ) ∣ X = x] .

s = 1 E[r(X) ∣ X = x] = r(x)



By the tower property,

and

The desired result follows from summing the two quantities.

18.

Since

and  by the tower property, .

19.

Unlike the distribution of , the distribution of  is concentrated around
. As  increases, so too does the concentration.

20.

For a vector  with entries ,

For a matrix  with entries , define the column vector  as the transpose of the -th row of . Then,

Therefore, .

Next, using our findings in Question 14,

As before, we can generalize this to the matrix case by noting that

E [V(Y ∣ X)] = E [E [Y 2 ∣ X] − E[Y ∣ X]2] = E [Y 2] − E [E[Y ∣ X]2]

V(E [Y ∣ X]) = E [E[Y ∣ X]2] − E[E [Y ∣ X]]2 = E [E[Y ∣ X]2] − E[Y ]2.

E[XY ] = E[E[XY ∣ Y ]] = E[E[X ∣ Y ]Y ] = E[cY ] = cEY

EX = E[E[X ∣ Y ]] = c Cov(X,Y ) = E[XY ] − EXEY = 0

X1 ∼ Unif(0, 1) (X1 + ⋯ + Xn)/n
E[X1] n

a ai

E [a⊺X] = E[∑
j

ajXj] = ∑ ajEXj = a⊺EX.

A aij ai⋆ i A

(E [AX])i = E [(AX)i] = E [a⊺
i⋆X] = a

⊺
i⋆EX.

E[AX] = AEX

V(a⊺X) = V(∑
j

ajXj) = ∑
i,j

ai Cov(Xi,Xj)aj = a⊺V(X)a.

(V(AX))ij = Cov((AX)i, (AX)j) = Cov(a⊺
i⋆X, a⊺

j⋆X) = ∑
k,ℓ

aik Cov(Xk,Xℓ)ajℓ.



Therefore, .

21.

If , then

and . Therefore,

22.

a)

Note that . Moreover,  and 
. Since ,  and  are dependent.

b)

If , then  and hence . Therefore,  trivially. Moreover,

23.

Let . The MGF of  is

Let . Then,

Therefore, the MGF of  is .

Lastly, let . Then,

V(AX) = AV(X)A⊺

E[Y ∣ X] = X

E[XY ] = E[E[XY ∣ X]] = E[XE[Y ∣ X]] = E[X2]

EY = E[E[Y ∣ X]] = EX

Cov(X,Y ) = E[XY ] − EXEY = E[X2] − (EX)2 = V(X).

E[YZ] = EI(a,b)(X) = b − a EY = EI(0,b)(X) = b

EZ = EI(a,1)(X) = 1 − a E[YZ] ≠ EYEZ Y Z

Z = 0 X ≤ a < b Y = 1 E[Y ∣ Z = 0] = 1

E [Y ∣ Z = 1] = = .
E [YZ]

P(Z = 1)

b − a

1 − a

K ∼ Poisson(λ) K

E [etK] = e−λ∑
k

= e−λ∑
k

= exp(λ (et − 1))
λketk

k!

(λet)
k

k!

X ∼ N(μ,σ2)

σ√2πE [etX] = ∫
∞

−∞

exp{− ((x − μ)2 − 2tσ2x)}dx

= exp(tμ + t2σ2/2) ∫
∞

−∞

exp{− (x − μ − tσ2)
2
}dx.

1

2σ2

1

2σ2

X exp(tμ + t2σ2/2)

Y ∼ Gamma(α,β)



is finite whenever . Therefore, under the same condition, the MGF of  is .

24.

Suppose . Then,

and hence

Since this is the MGF of a Gamma distribution, it follows that the sum of IID exponentially distributed random
variables are Gamma distributed.

E [etY ] = βα ∫
∞

0
dx = ( )

α

∫
∞

0
dx

xα−1e(t−β)x

Γ(a)

β

t − β

(t − β)αxα−1e(t−β)x

Γ(a)

t < β Y (1 − t/β)−α

β > t

E [exp(tX1)] = ∫
∞

0
β exp((t − β)x)dx =

β

β − t

E[exp(t∑
i

Xi)] = E[exp(tX1)]n = ( )
n

= (1 − )
−n

.
β

β − t

t

β


