All of Statistics - Chapter 3 Solutions

May 3, 2020

1.

Let X_{n} be the number of dollars at the n-th trial. Then,

$$
\mathbb{E}\left[X_{n+1} \mid X_{n}\right]=\frac{1}{2}\left(2 X_{n}+\frac{1}{2} X_{n}\right)=\frac{5}{4} X_{n} .
$$

By the rule of iterated expectations, $\mathbb{E} X_{n+1}=(5 / 4) \mathbb{E} X_{n}$. By induction, $\mathbb{E} X_{n}=(5 / 4)^{n} c$.

2.

If $\mathbb{P}(X=c)=1$, then $\mathbb{E}\left[X^{2}\right]=(\mathbb{E} X)^{2}=c^{2}$ and hence $\mathbb{V}(X)=0$.
The converse is more complicated. We claim that whenever Y is a nonnegative random variable, $\mathbb{E} Y=0$ implies that $\mathbb{P}(Y=0)=1$. In this case, it is sufficient to take $Y=(X-\mathbb{E} X)^{2}$ to conclude that $\mathbb{P}(X=\mathbb{E} X)=1$.

To substantiate the claim, suppose $\mathbb{E} Y=0$. Take $A_{n}=\{Y \geq 1 / n\}$. Then,

$$
0=\mathbb{E} Y=\mathbb{E}\left[Y I_{A_{n}}+Y I_{A_{n}^{c}}\right] \geq \mathbb{E}\left[Y I_{A_{n}}\right] \geq \frac{1}{n} \mathbb{P}\left(A_{n}\right)
$$

It follows that $\mathbb{P}\left(A_{n}\right)=0$ for all n. By continuity of probability,

$$
\mathbb{P}(Y>0)=\mathbb{P}\left(\cup_{n} A_{n}\right)=\lim _{n} \mathbb{P}\left(A_{n}\right)=0
$$

3.

Since $F_{Y_{n}}(y)=\mathbb{P}\left(X_{1} \leq y\right)^{n}=y^{n}$, it follows that $f_{Y_{n}}(y)=n y^{n-1}$. Therefore,

$$
\mathbb{E} Y_{n}=n \int_{0}^{1} y^{n} d y=\frac{n}{n+1}
$$

4.

Note that $X_{n}=\sum_{i=1}^{n}\left(1-2 B_{i}\right)=n-2 \sum_{i} B_{i}$ where $B_{1}, \ldots, B_{n} \sim \operatorname{Bernoulli}(p)$ are IID. It follows that $\mathbb{E} X_{n}=n-2 n \mathbb{E} B_{1}=n-2 n p$ and $\mathbb{V}\left(X_{n}\right)=4 n \mathbb{V}\left(B_{1}\right)=4 n p(1-p)$.

5.

Let τ be the number of tosses until a heads is observed. Let C denote the result of the first toss. Then,

$$
\mathbb{E} \tau=\frac{1}{2}(\mathbb{E}[\tau \mid C=H]+\mathbb{E}[\tau \mid C=T])=\frac{1}{2}(1+(1+\mathbb{E} \tau))
$$

Solving for $\mathbb{E} \tau$ yields 2 .

6.

$$
\begin{aligned}
\mathbb{E} & {[Y]=\sum_{y} y \mathbb{P}(Y=y)=\sum_{y} y \mathbb{P}(r(X)=y)=\sum_{y} y \mathbb{P}\left(X \in r^{-1}(y)\right) } \\
& =\sum_{y} y \sum_{x \in r^{-1}(y)} \mathbb{P}(X=x)=\sum_{y} \sum_{x \in r^{-1}(y)} r(x) \mathbb{P}(X=x)=\sum_{x} r(x) \mathbb{P}(X=x)
\end{aligned}
$$

7.

Integration by parts yields

$$
\begin{aligned}
\mathbb{E} X= & \int_{0}^{\infty} x f_{X}(x) d x=\lim _{y \rightarrow \infty} y F_{X}(y)-\int_{0}^{y} F_{X}(x) d x \\
& =\lim _{y \rightarrow \infty} \int_{0}^{y} F_{X}(y)-F_{X}(x) d x=\lim _{y \rightarrow \infty} \int_{0}^{\infty}\left(F_{X}(y)-F_{X}(x)\right) I_{(0, y)}(x) d x .
\end{aligned}
$$

Define $G_{y}(x)=\left(F_{X}(y)-F_{X}(x)\right) I_{(0, y)}(x)$. Note that G_{y} converges pointwise to $1-F_{X}$ as $y \rightarrow \infty$. Moreover, $y \mapsto G_{y}$ is monotone increasing. The desired result follows by Lebesgue's monotone convergence theorem.

8.

The first two claims follow from

$$
\mathbb{E} \bar{X}=\frac{1}{n} \sum_{i} \mathbb{E} X_{i}=\mathbb{E} X_{1} \equiv \mu
$$

and

$$
\mathbb{V}(\bar{X})=\frac{1}{n^{2}} \sum_{i} \mathbb{V}\left(X_{1}\right)=\frac{1}{n} \mathbb{V}\left(X_{1}\right) \equiv \frac{\sigma^{2}}{n}
$$

As for the final claim, note that

$$
(n-1) S_{n}^{2}=\sum_{i}\left(X_{i}-\bar{X}\right)^{2}=\sum_{i} X_{i}^{2}-2 X_{i} \bar{X}+\bar{X}^{2}
$$

and hence

$$
\frac{n-1}{n} \mathbb{E}\left[S_{n}^{2}\right]=\mathbb{E}\left[X_{1}^{2}\right]-2 \mathbb{E}\left[X_{1} \bar{X}\right]+\mathbb{E}\left[\bar{X}^{2}\right]
$$

Next, note that $\mathbb{E}\left[X_{1}^{2}\right]=\sigma^{2}+\mu^{2}$ and $\mathbb{E}\left[\bar{X}^{2}\right]=\sigma^{2} / n+\mu^{2}$. Moreover,

$$
X_{1} \bar{X}=\frac{1}{n}\left(X_{1}^{2}+X_{1} \sum_{j \neq 1} X_{j}\right)
$$

and hence $\mathbb{E}\left[X_{1} \bar{X}\right]=\sigma^{2} / n+\mu^{2}$. Substituting these findings into the equation above yields $\mathbb{E}\left[S_{n}^{2}\right]=\sigma^{2}$, as desired.
9.

TODO (Computer Experiment)
10.

The MGF of a normal random variable is $\exp \left(t^{2} / 2\right)$. Therefore, $\mathbb{E} \exp (X)=\sqrt{e}$ and

$$
\mathbb{V}(\exp (X))=\mathbb{E}[\exp (2 X)]-(\mathbb{E} \exp (X))^{2}=e^{2}-e
$$

11.

a)

This was already solved in Question 4.
b)

TODO (Computer Experiment)
12.

TODO
13.
a)

Let C denote the result of the coin toss. Then,

$$
\mathbb{E} X=\mathbb{E}\left[\operatorname{Unif}(0,1) I_{\{C=H\}}+\operatorname{Unif}(3,4) I_{\{C=T\}}\right]=\frac{1}{2}(\mathbb{E} \operatorname{Unif}(0,1)+\mathbb{E} \operatorname{Unif}(3,4))=2 .
$$

b)

Similarly to Part (a),

$$
\mathbb{E}\left[X^{2}\right]=\frac{1}{2}\left(\mathbb{E}\left[\operatorname{Unif}(0,1)^{2}\right]+\mathbb{E}\left[\operatorname{Unif}(3,4)^{2}\right]\right)=\frac{19}{3} .
$$

Therefore, $\mathbb{V}(X)=19 / 3-4=7 / 3$.
14.

The result follows from

$$
\begin{aligned}
& \operatorname{Cov}\left(\sum_{i} a_{i} X_{i}, \sum_{j} b_{j} Y_{j}\right) \\
& \quad=\mathbb{E}\left[\left(\sum_{i} a_{i} X_{i}\right)\left(\sum_{j} b_{j} Y_{j}\right)\right]-\mathbb{E}\left[\sum_{i} a_{i} X_{i}\right] \mathbb{E}\left[\sum_{j} b_{j} Y_{j}\right] \\
& \quad=\sum_{i, j} a_{i} b_{j} \mathbb{E}\left[X_{i} Y_{j}\right]-\sum_{i, j} a_{i} b_{j} \mathbb{E} X_{i} \mathbb{E} Y_{j}=\sum_{i, j} a_{i} b_{j}\left(\mathbb{E}\left[X_{i} Y_{j}\right]-\mathbb{E} X_{i} \mathbb{E} Y_{j}\right)
\end{aligned}
$$

15.

First, note that $\mathbb{V}(2 X-3 Y+8)=\mathbb{V}(2 X-3 Y)$. Moreover,

$$
\mathbb{E}\left[(2 X-3 Y)^{2}\right]=\int_{0}^{2} \int_{0}^{1}(2 x-3 y)^{2} \frac{1}{3}(x+y) d x d y=\frac{86}{9}
$$

and

$$
\mathbb{E}[2 X-3 Y]=\int_{0}^{2} \int_{0}^{1}(2 x-3 y) \frac{1}{3}(x+y) d x d y=-\frac{23}{9} .
$$

Therefore, $\mathbb{V}(2 X-3 Y)=245 / 81$.
16.

In the (absolutely) continuous case,

$$
\begin{aligned}
\mathbb{E}[r(X) s(Y) \mid X=x]=\int r(x) s(y) f_{Y \mid X}(y \mid x) d y= & r(x) \int s(y) f_{Y \mid X}(y \mid x) d y \\
& =r(x) \mathbb{E}[s(Y) \mid X=x]
\end{aligned}
$$

Taking $s=1$ yields $\mathbb{E}[r(X) \mid X=x]=r(x)$. The discrete case is similar. A more general notion of conditional expectation requires Radon-Nikodym derivatives.

By the tower property,

$$
\mathbb{E}[\mathbb{V}(Y \mid X)]=\mathbb{E}\left[\mathbb{E}\left[Y^{2} \mid X\right]-\mathbb{E}[Y \mid X]^{2}\right]=\mathbb{E}\left[Y^{2}\right]-\mathbb{E}\left[\mathbb{E}[Y \mid X]^{2}\right]
$$

and

$$
\mathbb{V}(\mathbb{E}[Y \mid X])=\mathbb{E}\left[\mathbb{E}[Y \mid X]^{2}\right]-\mathbb{E}[\mathbb{E}[Y \mid X]]^{2}=\mathbb{E}\left[\mathbb{E}[Y \mid X]^{2}\right]-\mathbb{E}[Y]^{2}
$$

The desired result follows from summing the two quantities.

18.

Since

$$
\mathbb{E}[X Y]=\mathbb{E}[\mathbb{E}[X Y \mid Y]]=\mathbb{E}[\mathbb{E}[X \mid Y] Y]=\mathbb{E}[c Y]=c \mathbb{E} Y
$$

and $\mathbb{E} X=\mathbb{E}[\mathbb{E}[X \mid Y]]=c$ by the tower property, $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E} X \mathbb{E} Y=0$.

19.

Unlike the distribution of $X_{1} \sim \operatorname{Unif}(0,1)$, the distribution of $\left(X_{1}+\cdots+X_{n}\right) / n$ is concentrated around $\mathbb{E}\left[X_{1}\right]$. As n increases, so too does the concentration.
20.

For a vector a with entries a_{i},

$$
\mathbb{E}\left[a^{\top} X\right]=\mathbb{E}\left[\sum_{j} a_{j} X_{j}\right]=\sum a_{j} \mathbb{E} X_{j}=a^{\top} \mathbb{E} X
$$

For a matrix A with entries $a_{i j}$, define the column vector $a_{i \star}$ as the transpose of the i-th row of A. Then,

$$
(\mathbb{E}[A X])_{i}=\mathbb{E}\left[(A X)_{i}\right]=\mathbb{E}\left[a_{i \star}^{\top} X\right]=a_{i \star}^{\top} \mathbb{E} X
$$

Therefore, $\mathbb{E}[A X]=A \mathbb{E} X$.
Next, using our findings in Question 14,

$$
\mathbb{V}\left(a^{\top} X\right)=\mathbb{V}\left(\sum_{j} a_{j} X_{j}\right)=\sum_{i, j} a_{i} \operatorname{Cov}\left(X_{i}, X_{j}\right) a_{j}=a^{\top} \mathbb{V}(X) a
$$

As before, we can generalize this to the matrix case by noting that

$$
(\mathbb{V}(A X))_{i j}=\operatorname{Cov}\left((A X)_{i},(A X)_{j}\right)=\operatorname{Cov}\left(a_{i \star}^{\top} X, a_{j \star}^{\top} X\right)=\sum_{k, \ell} a_{i k} \operatorname{Cov}\left(X_{k}, X_{\ell}\right) a_{j \ell}
$$

Therefore, $\mathbb{V}(A X)=A \mathbb{V}(X) A^{\top}$.

21.

If $\mathbb{E}[Y \mid X]=X$, then

$$
\mathbb{E}[X Y]=\mathbb{E}[\mathbb{E}[X Y \mid X]]=\mathbb{E}[X \mathbb{E}[Y \mid X]]=\mathbb{E}\left[X^{2}\right]
$$

and $\mathbb{E} Y=\mathbb{E}[\mathbb{E}[Y \mid X]]=\mathbb{E} X$. Therefore,

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E} X \mathbb{E} Y=\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2}=\mathbb{V}(X)
$$

22.

a)

Note that $\mathbb{E}[Y Z]=\mathbb{E} I_{(a, b)}(X)=b-a$. Moreover, $\mathbb{E} Y=\mathbb{E} I_{(0, b)}(X)=b$ and $\mathbb{E} Z=\mathbb{E} I_{(a, 1)}(X)=1-a$. Since $\mathbb{E}[Y Z] \neq \mathbb{E} Y \mathbb{E} Z, Y$ and Z are dependent.
b)

If $Z=0$, then $X \leq a<b$ and hence $Y=1$. Therefore, $\mathbb{E}[Y \mid Z=0]=1$ trivially. Moreover,

$$
\mathbb{E}[Y \mid Z=1]=\frac{\mathbb{E}[Y Z]}{\mathbb{P}(Z=1)}=\frac{b-a}{1-a}
$$

23.

Let $K \sim \operatorname{Poisson}(\lambda)$. The MGF of K is

$$
\mathbb{E}\left[e^{t K}\right]=e^{-\lambda} \sum_{k} \frac{\lambda^{k} e^{t k}}{k!}=e^{-\lambda} \sum_{k} \frac{\left(\lambda e^{t}\right)^{k}}{k!}=\exp \left(\lambda\left(e^{t}-1\right)\right)
$$

Let $X \sim N\left(\mu, \sigma^{2}\right)$. Then,

$$
\begin{aligned}
\sigma \sqrt{2 \pi} \mathbb{E}\left[e^{t X}\right]=\int_{-\infty}^{\infty} & \exp \left\{-\frac{1}{2 \sigma^{2}}\left((x-\mu)^{2}-2 t \sigma^{2} x\right)\right\} d x \\
& =\exp \left(t \mu+t^{2} \sigma^{2} / 2\right) \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(x-\mu-t \sigma^{2}\right)^{2}\right\} d x
\end{aligned}
$$

Therefore, the MGF of X is $\exp \left(t \mu+t^{2} \sigma^{2} / 2\right)$.
Lastly, let $Y \sim \operatorname{Gamma}(\alpha, \beta)$. Then,

$$
\mathbb{E}\left[e^{t Y}\right]=\beta^{\alpha} \int_{0}^{\infty} \frac{x^{\alpha-1} e^{(t-\beta) x}}{\Gamma(a)} d x=\left(\frac{\beta}{t-\beta}\right)^{\alpha} \int_{0}^{\infty} \frac{(t-\beta)^{\alpha} x^{\alpha-1} e^{(t-\beta) x}}{\Gamma(a)} d x
$$

is finite whenever $t<\beta$. Therefore, under the same condition, the MGF of Y is $(1-t / \beta)^{-\alpha}$.

24.

Suppose $\beta>t$. Then,

$$
\mathbb{E}\left[\exp \left(t X_{1}\right)\right]=\int_{0}^{\infty} \beta \exp ((t-\beta) x) d x=\frac{\beta}{\beta-t}
$$

and hence

$$
\mathbb{E}\left[\exp \left(t \sum_{i} X_{i}\right)\right]=\mathbb{E}\left[\exp \left(t X_{1}\right)\right]^{n}=\left(\frac{\beta}{\beta-t}\right)^{n}=\left(1-\frac{t}{\beta}\right)^{-n}
$$

Since this is the MGF of a Gamma distribution, it follows that the sum of IID exponentially distributed random variables are Gamma distributed.

