## All of Statistics - Chapter 1 Solutions

Apr 30, 2020
Acknowledgements: Thanks to Ben S. for correcting some mistakes.

## 1.

Let $i<j$. Since $B_{i} \subset A_{i}$ and $B_{j} \cap A_{i}=\emptyset$, it follows that $B_{i}$ and $B_{j}$ are disjoint.
Since $A_{1} \subset A_{2} \subset \cdots$, it follows that $A_{n}=\cup_{i=1}^{n} A_{i}$ for each $n$.
Suppose $\cup_{i=1}^{n} B_{i}=A_{n}$ for some $n$. By the previous claim, it follows that

$$
\cup_{i=1}^{n+1} B_{i}=A_{n} \cup B_{n+1}=\left(\cup_{i=1}^{n} A_{i}\right) \cup\left(A_{n+1} \backslash\left(\cup_{i=1}^{n} A_{i}\right)\right)=\cup_{i=1}^{n+1} A_{i}
$$

Lastly, let $A_{1} \supset A_{2} \supset \cdots$ be monotone decreasing. Noting that $A_{1}^{c} \subset A_{2}^{c} \subset \cdots$ is monotone increasing,

$$
\mathbb{P}\left(\cap_{n} A_{n}\right)=1-\mathbb{P}\left(\cup A_{n}^{c}\right)=1-\lim _{n} \mathbb{P}\left(A_{n}^{c}\right)=\lim _{n} 1-\mathbb{P}\left(A_{n}^{c}\right)=\lim _{n} \mathbb{P}\left(A_{n}\right)
$$

2. 

Since $\mathbb{P}(\emptyset \cup \emptyset)=2 \mathbb{P}(\emptyset)$ by additivity, it follows that $\mathbb{P}(\emptyset)=0$.
If $A$ is contained in $B$, then

$$
\mathbb{P}(B)=\mathbb{P}(A \cup B)=\mathbb{P}(A \cup(B \backslash A))=\mathbb{P}(A)+\mathbb{P}(B \backslash A) \geq \mathbb{P}(A)
$$

As an immediate consequence of the previous two claims, it follows that $\mathbb{P}(A) \leq \mathbb{P}(\Omega)=1$.
Since $\mathbb{P}(A)+\mathbb{P}\left(A^{c}\right)=\mathbb{P}\left(A \cup A^{c}\right)=\mathbb{P}(\Omega)=1$, it follows that $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$.
Lastly, we point out that by taking $A_{2}=A_{3}=\cdots=\emptyset$ in the countable additivity property (Axiom 3), we obtain finite additivity: $\mathbb{P}\left(A_{1} \cup A_{2}\right)=\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2}\right)$ for any disjoint sets $A_{1}$ and $A_{2}$.
3.
a)

Note that

$$
B_{n}=\cup_{i=n}^{\infty} A_{i} \supset \cup_{i=n+1}^{\infty} A_{i}=B_{n+1}
$$

Similarly,

$$
C_{n}=\cap_{i=n}^{\infty} A_{i} \subset \cap_{i=n+1}^{\infty} A_{i}=C_{n+1}
$$

## b)

$\omega$ is in $\cap_{n} B_{n} \Longleftrightarrow \omega$ is in $B_{n}$ for each $n \Longleftrightarrow$ for each $n$, we can find $i \geq n$ such that $\omega$ is in $A_{i}$. Remark. A shorthand for $\cap_{n} B_{n}$ is $\lim \sup _{n} A_{n}$.
c)
$\omega$ is in $\cup_{n} C_{n} \Longleftrightarrow \omega$ is in $C_{n}$ for some $n \Longleftrightarrow$ we can find $n$ such that $\omega$ is in $A_{i}$ for each $i \geq n$. Remark. A shorthand for $\cup_{n} C_{n}$ is $\liminf _{n} A_{n}$.

## 4.

Note that

$$
\begin{aligned}
\omega \in\left(\cup_{i} A_{i}\right)^{c} & \Longleftrightarrow \omega \notin \cup_{i} A_{i} \\
& \Longleftrightarrow \omega \notin A_{i} \text { for each } i \\
& \Longleftrightarrow \omega \in A_{i}^{c} \text { for each } i \\
& \Longleftrightarrow \omega \in \cap_{i} A_{i}^{c} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\omega \in\left(\cap_{i} A_{i}\right)^{c} & \Longleftrightarrow \omega \notin \cap_{i} A_{i} \\
& \Longleftrightarrow \omega \notin A_{i} \text { for some } i \\
& \Longleftrightarrow \omega \in A_{i}^{c} \text { for some } i \\
& \Longleftrightarrow \omega \in \cup_{i} A_{i}^{c} .
\end{aligned}
$$

## 5.

The sample space for the repeated coin flip experiment is $\{H, T\}^{\mathbb{N}}$ : the set of all functions from the natural numbers to $\{H, T\}$. Let $X_{n}$ be one if the $n$-th toss is heads and zero otherwise. Then, the probability of stopping at the $k$-th toss is

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}+\cdots+X_{k-1}=1\right) \times \mathbb{P}\left(X_{k}=1\right)=\binom{k-1}{1} p(1-p)^{k-2} \times p \\
&=(k-1) p^{2}(1-p)^{k-2}
\end{aligned}
$$

The above simplifies to $(k-1) 2^{-k}$ in the case of a fair coin.

## 6.

Let $\mathbb{P}$ be a probability measure on $\mathbb{N}$. By additivity, $1=\mathbb{P}(\mathbb{N})=\sum_{n} \mathbb{P}(\{n\})$. Suppose $\mathbb{P}$ is uniform. Then, $\mathbb{P}(\{n\})=c$ for each $n$ and hence $\mathbb{P}(\mathbb{N})=c \cdot \infty$ (we interpret $0 \cdot \infty=0$ ), a contradiction.

Define $B_{n}$ as in the hint. By our findings in Questions 1 and 2,

$$
\mathbb{P}\left(\cup_{n} A_{n}\right)=\mathbb{P}\left(\cup_{n} B_{n}\right)=\sum_{n} \mathbb{P}\left(B_{n}\right) \leq \sum_{n} \mathbb{P}\left(A_{n}\right)
$$

## 8.

Since

$$
\mathbb{P}\left(\cup_{i} A_{i}^{c}\right) \leq \sum \mathbb{P}\left(A_{i}^{c}\right)=0
$$

it follows that

$$
\mathbb{P}\left(\cap_{i} A_{i}\right)=1-\mathbb{P}\left(\left(\cap_{i} A_{i}\right)^{c}\right)=1-\mathbb{P}\left(\cup_{i} A_{i}^{c}\right) \geq 1-0=1
$$

## 9.

First, note that $\mathbb{P}(A \mid B)=\mathbb{P}(A \cap B) / \mathbb{P}(B) \geq 0$. In particular, $\mathbb{P}(\Omega \mid B)=1$. Lastly, let $A_{1}, A_{2}, \ldots$ be disjoint. Then,

$$
\mathbb{P}\left(\cup_{n} A_{n} \mid B\right)=\frac{\mathbb{P}\left(\cup_{n}\left(A_{n} \cap B\right)\right)}{\mathbb{P}(B)}=\sum_{n} \frac{\mathbb{P}\left(A_{n} \cap B\right)}{\mathbb{P}(B)}=\sum_{n} \mathbb{P}\left(A_{n} \mid B\right) .
$$

## 10.

Without loss of generality, we can assume that the player picks door 1 and Monty reveals there is no prize behind door 2 . Then, the player is left between choosing door $i=1$ or $i=3$. It follows that

$$
p_{i} \equiv \mathbb{P}\left(\omega_{1}=i \mid \omega_{2}=2\right)=\frac{\mathbb{P}\left(\omega_{2}=2 \mid \omega_{1}=i\right) \mathbb{P}\left(\omega_{1}=i\right)}{\mathbb{P}\left(\omega_{2}=2\right)}=\frac{\mathbb{P}\left(\omega_{2}=2 \mid \omega_{1}=i\right)}{3 \mathbb{P}\left(\omega_{2}=2\right)}
$$

In particular,

$$
\mathbb{P}\left(\omega_{2}=2 \mid \omega_{1}=i\right)= \begin{cases}1 / 2 & \text { if } i=1 \\ 1 & \text { if } i=3\end{cases}
$$

Since the player should pick $i$ to maximize $p_{i}$, the player should switch from door 1 to door 3 .

## 11.

First, note that that

$$
\mathbb{P}\left(A^{c} \cap B^{c}\right)=\mathbb{P}\left(A^{c}\right)-\mathbb{P}(B)+\mathbb{P}(A \cap B)
$$

Using the independence of $A$ and $B$,

$$
\begin{aligned}
\mathbb{P}\left(A^{c} \cap B^{c}\right) & =\mathbb{P}\left(A^{c}\right)-\mathbb{P}(B)+\mathbb{P}(A) \mathbb{P}(B) \\
& =\mathbb{P}\left(A^{c}\right)-(1-\mathbb{P}(A)) \mathbb{P}(B) \\
& =\mathbb{P}\left(A^{c}\right)-\mathbb{P}\left(A^{c}\right) \mathbb{P}(B) \\
& =\mathbb{P}\left(A^{c}\right)(1-\mathbb{P}(B)) \\
& =\mathbb{P}\left(A^{c}\right) \mathbb{P}\left(B^{c}\right) .
\end{aligned}
$$

## 12.

Let $G_{0}$ (respectively, $G_{1}$ ) be the event that the side of the seen (respectively, unseen) card is green. Since $\mathbb{P}\left(G_{0}\right)=1 / 3+1 / 3 \cdot 1 / 2=1 / 2$, Then,

$$
\mathbb{P}\left(G_{1} \mid G_{0}\right)=\frac{\mathbb{P}\left(G_{0} \cap G_{1}\right)}{\mathbb{P}\left(G_{0}\right)}=\frac{1 / 3}{1 / 2}=2 / 3
$$

## 13.

a)

The sample space for this question is identical to that of Question 5.

## b)

We stop at the third toss if and only if the first three flips are $H H T$ or $T T H$. If $p$ is the probability of heads, then the probability of this is $p^{2}(1-p)+(1-p)^{2} p=p(1-p)$. In the case of a fair coin, this simplifies to $1 / 4$.

## 14.

Let $A$ and $B$ be events.
Suppose $\mathbb{P}(A)=0$. Then, $\mathbb{P}(A \cap B) \leq \mathbb{P}(A)=0$ and hence $\mathbb{P}(A \cap B)=0=\mathbb{P}(A) \mathbb{P}(B)$.
Suppose $\mathbb{P}(A)=1$. Then, $\mathbb{P}\left(A^{c}\right)=0$ and hence by our most recent findings, $A^{c}$ and $B^{c}$ are independent. By our findings in Question 11, it follows that $A$ and $B$ are independent.

Suppose now that $A$ is independent of itself. Then, $\mathbb{P}(A)=\mathbb{P}(A \cap A)=\mathbb{P}(A) \mathbb{P}(A)$ and hence either $\mathbb{P}(A)=0$ or $\mathbb{P}(A)=1$.

## 15.

Let $B_{k}$ be an indicator random variable that is one if and only if the $k$-th child has blue eyes. Let $B=B_{1}+B_{2}+B_{3}$. Let $p=1 / 4$ be the probability of having blue eyes and $q=1-p$.

## a)

Note that

$$
\mathbb{P}(B \geq 2 \mid B \geq 1)=\frac{\mathbb{P}(B \geq 2)}{\mathbb{P}(B \geq 1)}=\frac{1-\mathbb{P}(B \leq 1)}{1-\mathbb{P}(B=0)}
$$

Moreover, $\mathbb{P}(B=0)=q^{3}$ and $\mathbb{P}(B=1)=3 p q^{2}$. Therefore,

$$
\mathbb{P}(B \geq 2 \mid B \geq 1)=\frac{1-q^{3}-3 p q^{2}}{1-q^{3}}=\frac{10}{37}
$$

## b)

Note that

$$
\begin{aligned}
& \mathbb{P}\left(B \geq 2 \mid B_{1}=1\right)=\frac{\mathbb{P}\left(B_{1}=1, B_{2}+B_{3} \geq 1\right)}{\mathbb{P}\left(B_{1}=1\right)}=\mathbb{P}\left(B_{2}+B_{3} \geq 1\right) \\
&=1-\mathbb{P}\left(B_{2}+B_{3}=0\right)=1-q^{2}=\frac{7}{16}
\end{aligned}
$$

## 16.

Let $A$ and $B$ be events with $\mathbb{P}(B)>0 . \mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \mathbb{P}(B)$ follows by multiplying by $\mathbb{P}(B)$ on both sides of the definition of conditional probability. Moreover, if $A$ and $B$ are independent,

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)}=\mathbb{P}(A) .
$$

17. 

Assuming $\mathbb{P}(B C)$ and $\mathbb{P}(C)$ are positive, the result follows from combining

$$
\mathbb{P}(A B C)=\frac{\mathbb{P}(A B C)}{\mathbb{P}(B C)} \mathbb{P}(B C)=\mathbb{P}(A \mid B C) \mathbb{P}(B C)
$$

and

$$
\mathbb{P}(B C)=\frac{\mathbb{P}(B C)}{\mathbb{P}(C)} \mathbb{P}(C)=\mathbb{P}(B \mid C) \mathbb{P}(C)
$$

## 18.

If $A_{1}, \ldots, A_{k}$ are a partition of the sample space, then $1=\mathbb{P}\left(\cup_{i} A_{i}\right)=\sum_{i} \mathbb{P}\left(A_{i}\right)$. Moreover, for any event $B$,

$$
\mathbb{P}(B)=\mathbb{P}\left(\left(\cup_{i} A_{i}\right) \cap B\right)=\mathbb{P}\left(\cup_{i}\left(A_{i} \cap B\right)\right)=\sum_{i} \mathbb{P}\left(A_{i} \cap B\right) .
$$

If $\mathbb{P}(B)>0$, then we can divide both sides by $\mathbb{P}(B)$ to get $1=\sum_{i} \mathbb{P}\left(A_{i} \mid B\right)$. Combining this with a previous equality, we get $\sum_{i} \mathbb{P}\left(A_{i}\right)=\sum_{i} \mathbb{P}\left(A_{i} \mid B\right)$. Suppose now $\mathbb{P}\left(A_{1} \mid B\right)<\mathbb{P}\left(A_{1}\right)$. Then,

$$
\sum_{i \neq 1} \mathbb{P}\left(A_{i}\right)<\sum_{i \neq 1} \mathbb{P}\left(A_{i} \mid B\right)
$$

It follows that $\mathbb{P}\left(A_{i} \mid B\right)>\mathbb{P}\left(A_{i}\right)$ for at least one $i$.

## 19.

We use $M, W$, and $L$ to denote the event that the user uses Mac, Windows, and Linux, respectively. We use $V$ to denote the event that the user has the virus.

$$
\begin{aligned}
\mathbb{P}(W \mid V)=\frac{\mathbb{P}(V \mid W) \mathbb{P}(W)}{\mathbb{P}(V)} & =\frac{\mathbb{P}(V \mid W) \mathbb{P}(W)}{\sum_{X \in\{M, W, L\}} \mathbb{P}(V \mid X) \mathbb{P}(X)} \\
& =\frac{82 \times 50}{65 \times 30+82 \times 50+50 \times 20}=\frac{82}{141} \approx 0.58 .
\end{aligned}
$$

20. 

a)

$$
\mathbb{P}\left(C_{i} \mid H\right)=\frac{p_{i} \mathbb{P}\left(C_{i}\right)}{\mathbb{P}(H)}=\frac{p_{i} \mathbb{P}\left(C_{i}\right)}{\sum_{j} p_{j} \mathbb{P}\left(C_{j}\right)}=\frac{p_{i}}{\sum_{j} p_{j}}
$$

b)

$$
\mathbb{P}\left(H_{2} \mid H_{1}\right)=\frac{\mathbb{P}\left(H_{1} \cap H_{2}\right)}{\mathbb{P}\left(H_{1}\right)}=\frac{\sum_{i} p_{i}^{2} \mathbb{P}\left(C_{i}\right)}{\sum_{i} p_{i} \mathbb{P}\left(C_{i}\right)}=\frac{\sum_{i} p_{i}^{2}}{\sum_{i} p_{i}} .
$$

c)

$$
\mathbb{P}\left(C_{i} \mid B_{4}\right)=\frac{\mathbb{P}\left(C_{i} \cap B_{4}\right)}{\mathbb{P}\left(B_{4}\right)}=\frac{\mathbb{P}\left(B_{4} \mid C_{i}\right) \mathbb{P}\left(C_{i}\right)}{\sum_{j} \mathbb{P}\left(B_{4} \mid C_{j}\right) \mathbb{P}\left(C_{j}\right)}=\frac{\left(1-p_{i}\right)^{3} p_{i}}{\sum_{j}\left(1-p_{j}\right)^{3} p_{j}}
$$

21. 

TODO (Computer Experiment)
22.

TODO (Computer Experiment)
23.

TODO (Computer Experiment)

