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1.

It is easier to work in the multivariate setting for this proof.
In light of this, let  be a random  dimensional
vector.
Define  as the  matrix whose rows are .
Augment this matrix to obtain 
where  is the vector of ones, corresponding to a design matrix with a bias column.
Let  be the vector whose
coordinates are .

Using the fact that  and matrix calculus, it is straightforward to show that the RSS is

minimized when  is chosen to satisfy the linear system

Note that

and

Let  where  is a scalar.
The first row of the linear system yields

Since  when , the above is equivalent to Eq. (13.6).
Substituting the above into the
second row of the linear system yields

If , the above simplifies to

which, with some work, can be shown to be equivalent to Eq. (13.5).

Next, denoting by  the vector with coordinates , we have
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where .
Denoting by  the vector with coordinates  and  the vector of true
coefficients,

Using the fact that  is both symmetric and idempotent,

For brevity, we abuse notation by writing  to mean .
Then,

Assuming that  and  are independent whenever  yields  and hence

Moreover,

establishing that (13.7) is an unbiased estimator of the noise variance.

2.
We continue to use the notation established in the answer to the first exercise.
First, note that

and

Therefore,

and

Combining the above yields
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In the univariate case, the form

can be used to derive a closed form expression for the inverse which in turn yields (13.11) as desired.

3.

A univariate regression through the origin is a special case of the multivariate regression seen in Exercise 1.
It
has least squares coefficient

This is well-defined whenever at least one of the  is nonzero.

The standard error of this coefficient is also a special case of the standard error for the multivariate case seen in
Exercise 2.
It is

Since the least squares estimate is an MLE, it is consistent whenever it is well-defined.

4.

Using the fact that  and  are IID,

5.

Let .
By Theorem 13.8,

X⊺X = (
n n

¯̄̄ ¯̄
X

n
¯̄̄ ¯̄
X ∑iX

2
i

)

.
∑iXiYi

∑iX
2
i

Xi

.
σ2

∑iX
2
i

Yi Y ∗
i

E [R̂tr(S)] − R(S) = ∑
i
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Replacing  by  and taking square roots yields .
The Wald statistic is .

6.

TODO (Computer experiment).

7.

TODO (Computer experiment).

8.

Maximizing  is equivalent to minimizing .
This is equivalent to minimizing Mallow’s 
statistic since

9.

Choosing the model with the highest AIC is equivalent to choosing
the model with the lowest Mallow’s 

statistic. The two models
have Mallow’s statistics  and 
with 

. Note that

Therefore,  is picked if and only if .

a)

First, note that .
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If , then

b)

Let  so that

Let .
The KL distance between  and  is

If , this quantity converges to zero in probability since

Next, the KL distance between  and  is
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By the LLN,  converges to  in probability.
Suppose that .
Our findings in Part (a) imply that 
converges to one in probability.
Therefore, by Theorem 5.5,  converges to  in probability and hence 

 converges to zero in probability.

c)

Noting that the only difference between the AIC and BIC criteria is replacing the penalty of  by , we can
conclude that if , then

Recall that even in the limit, the corresponding quantity for AIC was not one.
Similarly, if , then

The limiting KL distances are also as before.

10.

a)

Suppose .
Since  is independent of  (recall that  correspond to a sample that hasn’t been
trained on),

b)

Similarly to Part (a),

11.

TODO (Computer experiment).
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