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1.

It is easier to work in the multivariate setting for this proof. In light of this, let X; be a random p dimensional
vector. Define X _ as the n X p matrix whose rows are XZ.T. Augment this matrix to obtain X = (e | X _¢)

where e is the vector of ones, corresponding to a design matrix with a bias column. Let Y be the vector whose
coordinates are Y;.

Using the fact that ) _, é? =Y - X B |? and matrix calculus, it is straightforward to show that the RSS is

minimized when (3 is chosen to satisfy the linear system

XTXB=XTY.
Note that
xy— (XY (™
XY XTYy
-0
and
XTY — n eTX_
T\ XTe X7, X,

Let B = (B 0 | B _0) where B o is a scalar. The first row of the linear system yields
a — 1 T n

Since €T X_o = nX when p = 1, the above is equivalent to Eq. (13.6). Substituting the above into the
second row of the linear system yields

1 . _
(XIOX_O — EXIOeeTX_()) B_y = XIOY — XIOGY.
If p = 1, the above simplifies to
-9 . -
ng—nx ﬂ1:ZXZ-YZ-—nXY
% 1

which, with some work, can be shown to be equivalent to Eq. (13.5).

Next, denoting by € the vector with coordinates € ;, we have



E=Y-XB=MY

where M = I — X(XT7X) 1 XT. Denoting by € the vector with coordinates €; and /3 the vector of true
coefficients,

é = MY = M(XB+ €) = Me.
Using the fact that M is both symmetric and idempotent,

RSS =) &’ =éTée =€ M"Me = e Me.

For brevity, we abuse notation by writing IE f to mean [E[f | X]. Then,
E [RSS] = E [e" Me| = tr(ME [e€T]).
Assuming that €; and €; are independent whenever 5 # j yields E[e€T] = 02T and hence
E [RSS] = o tr(M).
Moreover,
tr(M) = tr(Inxn) — tr(XTX(XTX) ) = tr(Lnn) — tr(Tpi1)x(pr1) =n— (p+1),

establishing that (13.7) is an unbiased estimator of the noise variance.

2.

We continue to use the notation established in the answer to the first exercise. First, note that
EY = E[XB+ € = X8
and
E[YYT|=E[(XB+¢€)(XB+¢€)]| =E[XBBTXT 4+ 2XBe" +ec’| = XBBTXT + o°1.
Therefore,
Ef = (XTX) X'E[Y] =8
and
E [BBT} —E [(XTX)‘1XTYYTX(XTX)‘1}
— (XTX) ' XTE[YYT| X(XTX) " =B88T + o3 XTX) .

Combining the above yields



In the univariate case, the form

n  nX

XTX = —
nX >, X?

can be used to derive a closed form expression for the inverse which in turn yields (13.11) as desired.

3.

A univariate regression through the origin is a special case of the multivariate regression seen in Exercise 1. It
has least squares coefficient

2. XiYi
-
2. X
This is well-defined whenever at least one of the X; is nonzero.

The standard error of this coefficient is also a special case of the standard error for the multivariate case seen in
Exercise 2. It is

0_2

> X7

Since the least squares estimate is an MLE, it is consistent whenever it is well-defined.

4.

Using the fact that ¥; and Y* are IID,

B [Ru(8)] - R(9) = S8 | (V5) - %) - (Vs) - ¥7) ]

Letd = Bl — 1730. By Theorem 13.8,



2

o 2
V(8) = V(B,) + 17*V(B,) — 17 Cov(B,, ;) = "2 (1 17X + AT 3 X3> .
n =

nsy

Replacing o by & and taking square roots yields SE(S). The Wald statistic is W = § / SAe(S).
6.

TODO (Computer experiment).

7.

TODO (Computer experiment).
8.

Maximizing AIC is equivalent to minimizing —202AIC. This is equivalent to minimizing Mallow’s Cj
statistic since

—20°AIC = —20%4g + 28| o
_ 92) ™ _ LS (vis 1Y 2
= —20 { 5 log(27) — nlogo 5 XZ: <Y,(S’) Y}) } +2|S|o

“ 2
— const. + (Yi(S) - y;-) +2|8]0?
= const. + C, + 2 S| 0.

9.

Choosing the model with the highest AIC is equivalent to choosing the model with the lowest Mallow’s Cp
statistic. The two models have Mallow’s statistics C;,) =>.X Z2 and Cf = > (X — 6)?] + 2 with

é = )_( . Note that

CS—CI}:ZXE—Z<XZ-—é)2+2:né2—2.

1
~2
Therefore, M is picked if and only if 8 < 2/n.
a)
First, note that 0 ~ N(0,1/n).1£0 = 0, then

P(J, = 0) = P(|6] < v2n?) = P(|Z] < v2) = 2®(+/2) — 1 ~ 0.8427.



If @ # 0, then

P(J, =0) =P(|6| < v/2n" %) = P(|Zn"Y? + 6] < v/2n71/?)

= B(—v/2— 0y < Z < V3~ 0y7) = 2(yZ — 0y/) — B(—yZ — 0,/7) — 0

b)

Let u = éI{anl} so that

SV (@-p)
fn(w)—\/% p( — )

Let Z ~ N(0,1). The KL distance between ¢ and fn is

D(¢o, f /¢0(Z 10g¢0(z) log f (Z))
=E[1og¢o< ) —log f ,(2)]

1
— EE [—ZZ +(Z — p)?

—

| I

1

(NN

If @ = 0, this quantity converges to zero in probability since

P(u2>e) =P@ I; 1y >€) <P >e) =P(2] > y/ne).
Next, the KL distance between qbé and f n 18
D63, f.) = [ #3(a) (108 ¢3(a) — log ﬁ(w)) do
— [602) (tog n(2) ~ g £+ 0)) a2
—E |log ¢o(2) ~ log f (2 +é

E[ (é—ﬂ)zw —20u+u2]

6 —20,u-|—,u)

= _E [—22 Z+0 L

l\Dll—‘l\Dll—‘[\D —



By the LLN, 6 converges to 6 in probability. Suppose that @ 7 0. Our findings in Part (a) imply that Iy ; 13

converges to one in probability. Therefore, by Theorem 5.5, 4 converges to € in probability and hence

A

D((]bé, f n) converges to zero in probability.

C)

Noting that the only difference between the AIC and BIC criteria is replacing the penalty of 2 by log n, we can
conclude that if @ = 0, then

P(J, =0) =2®( /logn) — 1 — 1.

Recall that even in the limit, the corresponding quantity for AIC was not one. Similarly, if @ 7 0, then

P(J, = 0) = &(4/logn — 0,/n) — &(—+/logn — 6,/n) — 0.

The limiting KL distances are also as before.

10.
a)

Suppose € ~ N (0, 0'2). Since € is independent of é (recall that X, correspond to a sample that hasn’t been
trained on),

Y N 2
o-Y. ¢ 9+£%N(0,1+0_),
S S S 52
b)

Similarly to Part (a),

S €
= +— = +
én &n &n s V2102 +JsZio?

Y, Y. 6-0 ¢ -0

11.

TODO (Computer experiment).



