All of Statistics - Chapter 13 Solutions

May 26, 2021

1.

It is easier to work in the multivariate setting for this proof. In light of this, let X_{i} be a random p dimensional vector. Define X_{-0} as the $n \times p$ matrix whose rows are X_{i}^{\top}. Augment this matrix to obtain $X=\left(e \mid X_{-0}\right)$ where e is the vector of ones, corresponding to a design matrix with a bias column. Let Y be the vector whose coordinates are Y_{i}.

Using the fact that $\sum_{i} \hat{\epsilon}_{i}^{2}=\|Y-X \hat{\beta}\|^{2}$ and matrix calculus, it is straightforward to show that the RSS is minimized when $\hat{\beta}$ is chosen to satisfy the linear system

$$
X^{\top} X \hat{\beta}=X^{\top} Y
$$

Note that

$$
X^{\top} Y=\binom{e^{\top} Y}{X_{-0}^{\top} Y}=\binom{n \bar{Y}}{X_{-0}^{\top} Y}
$$

and

$$
X^{\top} X=\left(\begin{array}{cc}
n & e^{\top} X_{-0} \\
X_{-0}^{\top} e & X_{-0}^{\top} X_{-0}
\end{array}\right)
$$

Let $\hat{\beta}=\left(\hat{\beta}_{0} \mid \hat{\beta}_{-0}\right)$ where $\hat{\beta}_{0}$ is a scalar. The first row of the linear system yields

$$
\hat{\beta}_{0}=\bar{Y}-\frac{1}{n} e^{\top} X_{-0} \hat{\beta}_{-0} .
$$

Since $e^{\top} X_{-0}=n \bar{X}$ when $p=1$, the above is equivalent to Eq. (13.6). Substituting the above into the second row of the linear system yields

$$
\left(X_{-0}^{\top} X_{-0}-\frac{1}{n} X_{-0}^{\top} e e^{\top} X_{-0}\right) \hat{\beta}_{-0}=X_{-0}^{\top} Y-X_{-0}^{\top} e \bar{Y}
$$

If $p=1$, the above simplifies to

$$
\left(\sum_{i} X_{i}^{2}-n \bar{X}^{2}\right) \hat{\beta}_{1}=\sum_{i} X_{i} Y_{i}-n \bar{X} \bar{Y}
$$

which, with some work, can be shown to be equivalent to Eq. (13.5).
Next, denoting by $\hat{\epsilon}$ the vector with coordinates $\hat{\epsilon}_{i}$, we have

$$
\hat{\epsilon}=Y-X \hat{\beta}=M Y
$$

where $M=I-X\left(X^{\top} X\right)^{-1} X^{\top}$. Denoting by ϵ the vector with coordinates ϵ_{i} and β the vector of true coefficients,

$$
\hat{\epsilon}=M Y=M(X \beta+\epsilon)=M \epsilon
$$

Using the fact that M is both symmetric and idempotent,

$$
\operatorname{RSS}=\sum_{i} \hat{\epsilon}_{i}^{2}=\hat{\epsilon}^{\top} \hat{\epsilon}=\epsilon^{\top} M^{\top} M \epsilon=\epsilon^{\top} M \epsilon .
$$

For brevity, we abuse notation by writing $\mathbb{E} f$ to mean $\mathbb{E}[f \mid X]$. Then,

$$
\mathbb{E}[\mathrm{RSS}]=\mathbb{E}\left[\epsilon^{\top} M \epsilon\right]=\operatorname{tr}\left(M \mathbb{E}\left[\epsilon \epsilon^{\top}\right]\right)
$$

Assuming that ϵ_{i} and ϵ_{j} are independent whenever $i \neq j$ yields $\mathbb{E}\left[\epsilon \epsilon^{\top}\right]=\sigma^{2} I$ and hence

$$
\mathbb{E}[\mathrm{RSS}]=\sigma^{2} \operatorname{tr}(M) .
$$

Moreover,

$$
\operatorname{tr}(M)=\operatorname{tr}\left(I_{n \times n}\right)-\operatorname{tr}\left(X^{\top} X\left(X^{\top} X\right)^{-1}\right)=\operatorname{tr}\left(I_{n \times n}\right)-\operatorname{tr}\left(I_{(p+1) \times(p+1)}\right)=n-(p+1),
$$

establishing that (13.7) is an unbiased estimator of the noise variance.

2.

We continue to use the notation established in the answer to the first exercise. First, note that

$$
\mathbb{E} Y=\mathbb{E}[X \beta+\epsilon]=X \beta
$$

and

$$
\mathbb{E}\left[Y Y^{\top}\right]=\mathbb{E}\left[(X \beta+\epsilon)(X \beta+\epsilon)^{\top}\right]=\mathbb{E}\left[X \beta \beta^{\top} X^{\top}+2 X \beta \epsilon^{\top}+\epsilon \epsilon^{\top}\right]=X \beta \beta^{\top} X^{\top}+\sigma^{2} I .
$$

Therefore,

$$
\mathbb{E} \hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} \mathbb{E}[Y]=\beta
$$

and

$$
\begin{aligned}
& \mathbb{E}\left[\hat{\beta} \hat{\beta}^{\top}\right]=\mathbb{E}\left[\left(X^{\top} X\right)^{-1} X^{\top} Y Y^{\top} X\left(X^{\top} X\right)^{-1}\right] \\
& \quad=\left(X^{\top} X\right)^{-1} X^{\top} \mathbb{E}\left[Y Y^{\top}\right] X\left(X^{\top} X\right)^{-1}=\beta \beta^{\top}+\sigma^{2}\left(X^{\top} X\right)^{-1}
\end{aligned}
$$

Combining the above yields

$$
\mathbb{V}\left(\hat{\beta} \hat{\beta}^{\top}\right)=\mathbb{E}\left[\hat{\beta} \hat{\beta}^{\top}\right]-\mathbb{E}[\hat{\beta}] \mathbb{E}[\hat{\beta}]^{\top}=\sigma^{2}\left(X^{\top} X\right)^{-1}
$$

In the univariate case, the form

$$
X^{\top} X=\left(\begin{array}{cc}
n & n \bar{X} \\
n \bar{X} & \sum_{i} X_{i}^{2}
\end{array}\right)
$$

can be used to derive a closed form expression for the inverse which in turn yields (13.11) as desired.

3.

A univariate regression through the origin is a special case of the multivariate regression seen in Exercise 1. It has least squares coefficient

$$
\frac{\sum_{i} X_{i} Y_{i}}{\sum_{i} X_{i}^{2}}
$$

This is well-defined whenever at least one of the X_{i} is nonzero.
The standard error of this coefficient is also a special case of the standard error for the multivariate case seen in Exercise 2. It is

$$
\frac{\sigma^{2}}{\sum_{i} X_{i}^{2}}
$$

Since the least squares estimate is an MLE, it is consistent whenever it is well-defined.

4.

Using the fact that Y_{i} and $Y_{i}{ }^{*}$ are IID,

$$
\begin{aligned}
\mathbb{E}\left[\hat{R}_{\mathrm{tr}}(S)\right]-R(S) & =\sum_{i} \mathbb{E}\left[\left(\hat{Y}_{i}(S)-Y_{i}\right)^{2}-\left(\hat{Y}_{i}(S)-Y_{i}^{*}\right)^{2}\right] \\
& =\sum_{i} \mathbb{E}\left[\hat{Y}_{i}(S)^{2}-2 \hat{Y}_{i}(S) Y_{i}+Y_{i}^{2}-\hat{Y}_{i}(S)^{2}+2 \hat{Y}_{i}(S) Y_{i}^{*}-\left(Y_{i}^{*}\right)^{2}\right] \\
& =\sum_{i}-2 \mathbb{E}\left[\hat{Y}_{i}(S) Y_{i}\right]+\mathbb{E}\left[Y_{i}^{2}\right]+2 \mathbb{E}\left[\hat{Y}_{i}(S) Y_{i}^{*}\right]-\mathbb{E}\left[\left(Y_{i}^{*}\right)^{2}\right] \\
& =-2 \sum_{i} \mathbb{E}\left[\hat{Y}_{i}(S) Y_{i}\right]-\mathbb{E}\left[\hat{Y}_{i}(S)\right] \mathbb{E}\left[Y_{i}\right] \\
& =-2 \sum_{i} \operatorname{Cov}\left(\hat{Y}_{i}(S), Y_{i}\right)
\end{aligned}
$$

5.

Let $\hat{\delta}=\hat{\beta}_{1}-17 \hat{\beta}_{0}$. By Theorem 13.8,

$$
\mathbb{V}(\hat{\delta})=\mathbb{V}\left(\hat{\beta}_{1}\right)+17^{2} \mathbb{V}\left(\hat{\beta}_{0}\right)-17 \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\frac{\sigma^{2}}{n s_{X}^{2}}\left(1+17 \bar{X}+\frac{17^{2}}{n} \sum_{i} X_{i}^{2}\right)
$$

Replacing σ by $\hat{\sigma}$ and taking square roots yields $\hat{\operatorname{se}}(\hat{\delta})$. The Wald statistic is $W=\hat{\delta} / \hat{\operatorname{se}}(\hat{\delta})$.

6.

TODO (Computer experiment).

7.

TODO (Computer experiment).

8.

Maximizing AIC is equivalent to minimizing $-2 \sigma^{2} \mathrm{AIC}$. This is equivalent to minimizing Mallow’s C_{p} statistic since

$$
\begin{aligned}
-2 \sigma^{2} \mathrm{AIC} & =-2 \sigma^{2} \ell_{S}+2|S| \sigma^{2} \\
& =-2 \sigma^{2}\left\{\frac{n}{2} \log (2 \pi)-n \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{i}\left(\hat{Y}_{i}(S)-Y_{i}\right)^{2}\right\}+2|S| \sigma^{2} \\
& =\text { const. }+\sum_{i}\left(\hat{Y}_{i}(S)-Y_{i}\right)^{2}+2|S| \sigma^{2} \\
& =\text { const. }+C_{p}+2|S| \sigma^{2}
\end{aligned}
$$

9.

Choosing the model with the highest AIC is equivalent to choosing the model with the lowest Mallow's C_{p} statistic. The two models have Mallow's statistics $C_{p}^{0}=\sum_{i} X_{i}^{2}$ and $C_{p}^{1}=\left[\sum_{i}\left(X_{i}-\hat{\theta}\right)^{2}\right]+2$ with $\hat{\theta}=\bar{X}$. Note that

$$
C_{p}^{0}-C_{p}^{1}=\sum_{i} X_{i}^{2}-\sum_{i}\left(X_{i}-\hat{\theta}\right)^{2}+2=n \hat{\theta}^{2}-2
$$

Therefore, \mathcal{M}_{0} is picked if and only if $\hat{\theta}^{2}<2 / n$.
a)

First, note that $\hat{\theta} \sim N(\theta, 1 / n)$. If $\theta=0$, then

$$
\mathbb{P}\left(J_{n}=0\right)=\mathbb{P}\left(|\hat{\theta}|<\sqrt{2} n^{-1 / 2}\right)=\mathbb{P}(|Z|<\sqrt{2})=2 \Phi(\sqrt{2})-1 \approx 0.8427
$$

If $\theta \neq 0$, then

$$
\begin{aligned}
& \mathbb{P}\left(J_{n}=0\right)=\mathbb{P}\left(|\hat{\theta}|<\sqrt{2} n^{-1 / 2}\right)=\mathbb{P}\left(\left|Z n^{-1 / 2}+\theta\right|<\sqrt{2} n^{-1 / 2}\right) \\
& =\mathbb{P}(-\sqrt{2}-\theta \sqrt{n}<Z<\sqrt{2}-\theta \sqrt{n})=\Phi(\sqrt{2}-\theta \sqrt{n})-\Phi(-\sqrt{2}-\theta \sqrt{n}) \rightarrow 0 .
\end{aligned}
$$

b)

Let $\mu=\hat{\theta} I_{\left\{J_{n}=1\right\}}$ so that

$$
\hat{f}_{n}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2}\right)
$$

Let $Z \sim N(0,1)$. The KL distance between ϕ_{0} and \hat{f}_{n} is

$$
\begin{aligned}
D\left(\phi_{0}, \hat{f}_{n}\right) & =\int \phi_{0}(z)\left(\log \phi_{0}(z)-\log \hat{f}_{n}(z)\right) d z \\
& =\mathbb{E}\left[\log \phi_{0}(Z)-\log \hat{f}_{n}(Z)\right] \\
& =\frac{1}{2} \mathbb{E}\left[-Z^{2}+(Z-\mu)^{2}\right] \\
& =\frac{1}{2} \mathbb{E}\left[-2 \mu Z+\mu^{2}\right]=\frac{1}{2} \mu^{2}
\end{aligned}
$$

If $\theta=0$, this quantity converges to zero in probability since

$$
\mathbb{P}\left(\mu^{2}>\epsilon\right)=\mathbb{P}\left(\hat{\theta}^{2} I_{\left\{J_{n}=1\right\}}>\epsilon\right) \leq \mathbb{P}\left(\hat{\theta}^{2}>\epsilon\right)=\mathbb{P}(|Z|>\sqrt{n \epsilon})
$$

Next, the KL distance between $\phi_{\hat{\theta}}$ and \hat{f}_{n} is

$$
\begin{aligned}
D\left(\phi_{\hat{\theta}}, \hat{f}_{n}\right) & =\int \phi_{\hat{\theta}}(x)\left(\log \phi_{\hat{\theta}}(x)-\log \hat{f}_{n}(x)\right) d x \\
& =\int \phi_{0}(z)\left(\log \phi_{0}(z)-\log \hat{f}_{n}(z+\hat{\theta})\right) d z \\
& =\mathbb{E}\left[\log \phi_{0}(Z)-\log \hat{f}_{n}(Z+\hat{\theta})\right] \\
& =\frac{1}{2} \mathbb{E}\left[-Z^{2}+(Z+\hat{\theta}-\mu)^{2}\right] \\
& =\frac{1}{2} \mathbb{E}\left[2(\hat{\theta}-\mu) Z+\hat{\theta}^{2}-2 \hat{\theta} \mu+\mu^{2}\right] \\
& =\frac{1}{2}\left(\hat{\theta}^{2}-2 \hat{\theta} \mu+\mu^{2}\right)
\end{aligned}
$$

By the LLN, $\hat{\theta}$ converges to θ in probability. Suppose that $\theta \neq 0$. Our findings in Part (a) imply that $I_{\left\{J_{n}=1\right\}}$ converges to one in probability. Therefore, by Theorem $5.5, \mu$ converges to θ in probability and hence $D\left(\phi_{\hat{\theta}}, \hat{f}_{n}\right)$ converges to zero in probability.
c)

Noting that the only difference between the AIC and BIC criteria is replacing the penalty of 2 by $\log n$, we can conclude that if $\theta=0$, then

$$
\mathbb{P}\left(J_{n}=0\right)=2 \Phi(\sqrt{\log n})-1 \rightarrow 1
$$

Recall that even in the limit, the corresponding quantity for AIC was not one. Similarly, if $\theta \neq 0$, then

$$
\mathbb{P}\left(J_{n}=0\right)=\Phi(\sqrt{\log n}-\theta \sqrt{n})-\Phi(-\sqrt{\log n}-\theta \sqrt{n}) \rightarrow 0
$$

The limiting KL distances are also as before.

10.

a)

Suppose $\epsilon \sim N\left(0, \sigma^{2}\right)$. Since ϵ is independent of $\hat{\theta}$ (recall that X_{*} correspond to a sample that hasn't been trained on),

$$
\frac{Y_{*}-\hat{Y}_{*}}{s}=-\frac{\hat{\theta}-\theta}{s}+\frac{\epsilon}{s} \approx N\left(0,1+\frac{\sigma^{2}}{s^{2}}\right)
$$

b)

Similarly to Part (a),

$$
\begin{aligned}
\frac{Y_{*}-\hat{Y}_{*}}{\xi_{n}}=-\frac{\hat{\theta}-\theta}{\xi_{n}}+\frac{\epsilon}{\xi_{n}} & =-\frac{\hat{\theta}-\theta}{s} \frac{s}{\sqrt{s^{2}+\sigma^{2}}}+\frac{\epsilon}{\sqrt{s^{2}+\sigma^{2}}} \\
& \approx N\left(0, \frac{s^{2}}{s^{2}+\sigma^{2}}\right)+N\left(0, \frac{\sigma^{2}}{s^{2}+\sigma^{2}}\right)=N(0,1)
\end{aligned}
$$

11.

TODO (Computer experiment).

