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1.

Let

Zn =
θ̂ − θ

⋆

^
se

.

The probability of correctly rejecting the null hypothesis is

β(θ
⋆

) = 1 − P(|W| ≤ zα / 2)

= 1 − P
θ0 − θ

⋆

^
se

− zα / 2 ≤ Zn ≤
θ0 − θ

⋆

^
se

+ zα / 2

= 1 − P Zn ≤
θ0 − θ

⋆

^
se

+ zα / 2 + P Zn ≤
θ0 − θ

⋆

^
se

− zα / 2

If Zn is asymptotically normal, taking limits in the above yields expression (10.6).

2.

Suppose the conditions of Theorem 10.12 hold and that the CDF F of T ∘ Xn is strictly increasing. Then,

Pθ0
[T(Xn) ≥ T(xn)] = 1 − F[T(xn)]

and hence

Pθ0
[p-value ≤ y] = Pθ0

[F(T(xn)) ≥ 1 − y]

= 1 − Pθ0
[T(xn) ≤ F − 1(1 − y)] = 1 − F(F − 1(1 − y)) = y.

3.

Recall that the Wald test rejects if and only if |W | > zα / 2. Equivalently, it does not reject if and only if

θ̂ − zα / 2 ⋅
^
se ≤ θ0 ≤ θ̂ + zα / 2 ⋅

^
se.
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4.

Note that

p-value = inf sup
θ∈Θ0

Pθ(T(Xn) ≥ cα) : T(xn) ≥ cα .

Assuming that to each observed test statistic T(xn) there exists a test with cα = T(xn), the infimum above is

attained at cα = T(xn) and the desired result follows.

5.

a)

The power function is

β(θ) = Pθ(Y > c) = 1 − (c /θ)n.

b)

See Part (d).

c)

We should not reject the null if we observe 0.48 since

p-value = P1 / 2(Y ≥ 0.48) = 1 − (2 ⋅ 0.48)20 ≈ 0.558.

d)

A test of size α is obtained by setting

cα ≡
1
2

(1 − α)1 / n.

converges to monotonically to 0.5 as α converges monotonically to zero from above. Therefore, all possible tests
reject the observation 0.52 (since it is greater than 0.5) and hence the corresponding p-value is exactly zero. In
this case, we can reject the null with zero probability of making a type I error.

6.

Let θ̂ be the fraction of deaths that occur after passover. Note that either Wald statistic

{ }



W0 =
θ̂ − θ0

Vθ0
(θ̂)

= √n
θ̂ − θ0

θ0 1 − θ0

or

W =
θ̂ − θ0

^
se(θ̂)

= √n
θ̂ − θ0

√θ̂ 1 − θ̂

are asymptotically normal under the null hypothesis and hence appropriate (see Remark 10.5). The p-value for
the latter is

2Φ( − |w|) = 2Φ − √1919
997/1919 − 1/2

(997/1919)(922/1919)
≈ 0.087.

This is weak evidence against the null. A 95% confidence interval for the probability of death before passover is

922/1919 ± 2 ⋅
^
se ≈ (0.46, 0.50).

7.

a)

Evaluating the code below reveals a p-value of approximately 0.00008 and a 95% confidence interval of
approximately (0.01, 0.03).

import numpy as np 

import scipy.stats 

twain     = [.225, .262, .217, .240, .230, .229, .235, .217] 

snodgrass = [.209, .205, .196, .210, .202, .207, .224, .223, .220, .201] 

delta_hat = np.mean(twain) - np.mean(snodgrass) 

var_hat   = np.var(twain) / len(twain) + np.var(snodgrass) / len(snodgrass) 

se_hat    = np.sqrt(var_hat) 

wald      = delta_hat / se_hat 

p_value   = 2. * scipy.stats.norm.cdf(-np.abs(wald)) 

ci_95_lo  = delta_hat - 2. * se_hat 

ci_95_hi  = delta_hat + 2. * se_hat 

b)

The calculations in Part (a) relied on large sample methods despite there being only a handful of samples. A
better choice is a permutation test, which does not require many samples. Such a test is used below to obtain a p-
value of approximately 0.0007. This is still very strong evidence against the null.

import numpy as np 

n_sims = 10**5 

def test_stat(data_): 

    twain_, snodgrass_ = np.split(data_, [twain.size]) 
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    return np.abs(np.mean(twain_) - np.mean(snodgrass_)) 

# Compute test statistic on original data. 

twain     = [.225, .262, .217, .240, .230, .229, .235, .217] 

snodgrass = [.209, .205, .196, .210, .202, .207, .224, .223, .220, .201] 

data      = np.concatenate([twain, snodgrass]) 

observed  = test_stat(data) 

# Repeatedly shuffle and compute test statistic. 

np.random.seed(1) 

perm_stats = np.empty([n_sims]) 

for i in range(n_sims): 

    np.random.shuffle(data) 

    perm_stats[i] = test_stat(data) 

p_value = np.sum(perm_stats > observed) / n_sims 

8.

a)

Let Z be a standard normal random variable. Then, under the null hypothesis,

P0

X1 + ⋯ + Xn

n
> c = P Z > c√n = Φ( − c√n).

Therefore, a test of size α is obtained by taking

c = −
Φ − 1(α)

√n
.

b)

If the null hypothesis is false, the power is

β(1) = P1

X1 + ⋯ + Xn

n > c = P Z > (c − 1)√n = Φ( − (c − 1)√n).

c)

For a fixed size α,

β(1) = Φ(√n + Φ − 1(α)).

Taking limits yields the desired result.

9.

Let
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( ) ( )



xn =
θ0 − θ1

^
se

.

Then,

β(θ1) = Pθ1
(|Z| > zα / 2) = 1 − Pθ1

( − zα / 2 ≤ Z ≤ zα / 2)

= 1 − Pθ1
(xn − zα / 2 ≤ Z + xn ≤ xn + zα / 2) = 1 − Φ(xn + zα / 2) + Φ(xn − zα / 2).

Since xn → sign(θ0 − θ1)∞, it follows that β(θ1) converges to one in both the θ1 > θ0 and θ1 < θ0 case. In other
words, as the number of samples increase, the probability of rejection if the null hypothesis is false approaches
one.

10.

For each of the four weeks, a separate test is performed. Each test is a paired comparison (Example 10.7) whose
null hypothesis is that the rate of death among the two populations is equal. Evaluating the code below yields

Week p-value Boneferroni corrected p-value
-2 0.48 1
-1 0.0046 0.018
1 0.0068 0.027
2 0.27 1

Subject to a Bonferroni correction, there is strong evidence (p-value less than 0.05) to reject the null for weeks
-1 and 1.

import numpy as np 

import scipy.stats 

data = np.array([[55, 141], 

                 [33, 145], 

                 [70, 139], 

                 [49, 161]]) 

totals = np.sum(data, axis=0) 

fracs = data / totals 

deltas = fracs @ [1., -1.] 

std_errs = np.sqrt(np.sum(fracs * (1. - fracs) / totals, axis=1)) 

wald_stats = deltas / std_errs 

p_values = 2. * scipy.stats.norm.cdf(-np.abs(wald_stats)) 

bonferroni_p_values = np.minimum(p_values.size * p_values, 1.) 

11.

a)

Drug p-value Odds ratio Bonferroni p-value
Chlorpromazine 0.0057 0.41 0.023
Dimenhydrinate 0.52 1.2 1
Pentobarbital (100 mg) 0.63 0.85 1



Drug p-value Odds ratio Bonferroni p-value
Pentobarbital (150 mg) 0.01 0.56 0.4

The table above is generated by the code below.

import numpy as np 

import scipy.stats 

n_patients = np.array([80, 75, 85, 67, 85]) 

n_nausea = np.array([45, 26, 52, 35, 37]) 

fracs = n_nausea / n_patients 

variances = fracs * (1. - fracs) / n_patients 

odds_ratios = fracs[1:] / fracs[0] 

deltas = fracs[1:] - fracs[0] 

std_errs = np.sqrt(variances[1:] + variances[0]) 

wald_stats = deltas / std_errs 

p_values = 2. * scipy.stats.norm.cdf(-np.abs(wald_stats)) 

bonferroni_p_values = np.minimum(p_values.size * p_values, 1.) 

b)

The Bonferroni p-values are given above.

TODO(BH procedure)

12.

a)

Let λ̂ = n − 1 ∑nXn be the MLE. Then, V(λ̂) = n − 1λ and hence se(λ̂) = √n − 1λ. Therefore, a valid Wald statistic

is

W = √n
λ̂ − λ0

λ0
.

The rejection criteria is |W | > c. Taking c = zα / 2 yields a test that has asymptotic size α. Such a rejection
region is appropriate when n is large.

For small n, note that

β(λ0) = Pλ0
(|W| > c) = 1 − Pλ0

λ̂ − λ0 ≤ c λ0 /n

= 1 − Pλ0
(nλ0 − c nλ0 ≤ X1 + ⋯ + Xn ≤ nλ0 + c nλ0).

Let Y = ∑iXi ∼ Poisson(nλ0). Then,

√
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√ √



β(λ0) = 1 − FY((nλ0 + c nλ0) − ) + FY(nλ0 − c nλ0).

Finding c such that this quantity is as close to α yields the desired test.

b)

As discussed in Part (a), c is chosen so that the resulting test has power closest to 0.05. This yields a test of
power approximately 0.05572. Evaluating the code below, a type I error rate of 0.05578 is observed. If n were
larger, a Wald test whose power is closer to 0.05 could be constructed.

import numpy as np 

import scipy.stats 

lambda_0 = 1. 

n = 20 

alpha = 0.05 

n_sims = 10**7 

c = scipy.stats.norm.ppf(0.975)  # Approximately 1.96. 

np.random.seed(1) 

samples = np.random.poisson(lam=lambda_0, size=[n_sims, n]) 

wald = np.sqrt(n / lambda_0) * (np.mean(samples, axis=1) - lambda_0) 

n_reject = np.sum(np.abs(wald) > c) 

type_one_err_rate = n_reject / n_sims 

13.

Recall that

logL = −
n
2

log(2π) − logσ −
1

2σ2 ∑
i

Xi − μ 2.

Let μ̂ = n − 1 ∑iXi be the MLE. The likelihood ratio statistic is

√ √
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λ = 2logL(μ̂) − 2logL(μ) =
1

σ2 ∑
i

Xi − μ0
2 − Xi − μ̂ 2

=
1

σ2 n μ2
0 − μ̂2 − 2 μ0 − μ̂ ∑

i
Xi =

n

σ2 μ2
0 + μ̂2 − 2μ0μ̂ = n

μ̂ − μ0
2

σ2 .

The Wald test statistic is

W =
μ̂ − μ0

se(μ̂)
= √n

μ̂ − μ0

σ
.

Note, in particular, that W2 = λ.

14.

The likelihood ratio statistic is

λ = 2logL(σ̂) − 2logL(σ0) = 2n logσ0 − logσ̂ +
1

σ2
0

−
1

σ̂2 ∑
i

Xi − μ 2

= 2n logσ0 − logσ̂ + n
σ̂2 − σ2

0

σ2
0

.

The Wald test statistic is

W =
σ̂ − σ0

^
se(σ̂)

= √n
σ̂ − σ0

√1/ I(σ̂)
= √2n

σ̂ − σ0

σ̂
.

It is shown in Question 16 that W2 /λ
P

→ 1 under the null hypothesis.

15.

The log likelihood is

logL(p) = log
n

X
+ Xlogp + (n − X)log(1 − p).

Therefore, the likelihood ratio statistic is

λ = 2X logp̂ − logp0 + 2(n − X) log(1 − p̂) − log(1 − p0) .

( ( ) ( ) )
( ( ) ( ) ) ( ) ( )

( )

( ) ( ) ( )

( )

( )

( ) ( )



The Wald test statistic is

W = √n
p̂ − p0

√p̂ 1 − p̂
.

It is shown in Question 16 that W2 /λ
P

→ 1 under the null hypothesis.

16.

Throughout this proof, it is assumed that the density f(x; θ) appearing in the likelihood is sufficiently regular. A
Taylor expansion reveals

ℓ(θ0) = ℓ(θ̂) + (θ̂ − θ0)ℓ′(θ̂) +
1
2 (θ̂ − θ0)2ℓ′′(θ̂) + O((θ̂ − θ0)3).

Note, in particular, that ℓ′(θ̂) = 0 since θ̂ is an MLE. Therefore,

λ = 2log
L(θ̂)

L(θ0)
= − (θ̂ − θ0)2ℓ′′(θ̂) + O((θ̂ − θ0)3).

Moreover,

W2 =
(θ̂ − θ0)2

^
se(θ̂)2

= nI(θ̂)(θ̂ − θ0)2.

It follows that

λ

W2 =
n − 1ℓ′′(θ̂)

− I(θ̂)
+ O(θ̂ − θ0).

Under the null hypothesis, θ̂
P

→ θ0. Therefore, by two applications of Theorem 5.5 (f), 1 / I(θ̂) → 1/ I(θ0) where

I(θ0) = Eθ0

∂2logf(X; θ0)

∂θ2 .

Since

ℓ′′(θ) = ∑
n

∂2logf(Xn; θ)

∂θ2 ,

( )
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by the weak law of large numbers, n − 1ℓ′′(θ̂)
P

→ I(θ0) under the null hypothesis. The result now follows by
Theorem 5.5 (d).


